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1 Problem 1

1.1 Part 1
Consider the BVP
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1.1.1 Show that this is a regular Sturm-Liouville problem and put it
in Sturm-Liouville form.

1.1.1.1 Solution
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This is an SLP with w(z) = 2 where w(z) is the wieght function.

1.1.2 Find the eigenfunctions and corresponding eigenvalues.
1.1.2.1 Solution

We assume solutions of the form f(x) = 2 where « is complex.
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Plugging this into (1) and solving for o we have
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The general solution is thus



f(z) = z=V2 (13)
— eii\ﬁ)\ln(z) (14>

= ¢, cos (VAIn (z)) + ¢y sin (VA In (z)) (15)

Let us apply the boundary conditions f(1) =0 and f(2) =0

f(1) =0 = ¢, cos (VAIn (1)) 4 ¢y sin (VAIn (1)) (16)
=c¢ =0 (17)

f(2) =0 = ¢ysin (VAIn (2)) (18)

(19)

In order to satisfy the boundary condition at = 2 we set v Aln (2) equal to the
zeros of the sine function.

VAl (2) = nar (20)
2
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Thus the eigen-function, eigen-value pair is
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1.1.3 What is the orthogonality relationship associated with these
eigenfunctions?

1.1.3.1 Solution

From Section 1.1.1.1 we know that the weight function w(z) = 1 thus the
orthogonality condition is
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where A is the normalization constant and
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Let us find the normalization constant by computing the integral when n = m

Y / (mfln))id {Zu e (24)
_ / sin? (ﬂ;‘))du (25)
In(2) (sini:rnn)—Qﬂn) ! (26)
1.2 Part 2

Consider the equation
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1.2.1 Find the Green’s function G(x,z’) using the method of eigen-

function expansion.

1.2.1.1 Solution

We assume solutions of the following form

G0 = ety in (2282) -
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Let us find the first and second derivative with respect to x.
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IThis result is from wolfram alpha



Plugging in to (27), the cosine terms will cancel and we have
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or in terms of the eigenfunction, eigenvalues is
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Let us multiply by ¢,,(z) and the weight function w(x) on both sides and take
the integral in [1, 2].
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the Green’s function is thus

)= 35 i (P i (5L)

n=1

1.2.2 Find the Green’s function G(z,z’) directly using the ‘patching’
method

1.2.2.1 Solution

For a singular point 2’, the Green’s function G(z,z’) is defined in two parts by

{GL(x,x’) if v < o (38)

Gr(z,z’) ifz>ax

Let us solve the homogeneous problem for equation (27)
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G(z,z') =cyIn|z| + ¢y
Applying the left boundary conditions:
G,(1,2")=0=c;In(1) 4 ¢
02 == 0
x is bounded in the positive domain so we can drop the absolute value.
G (z,z") is thus
Gp(z,z") = ¢y In(z)
Applying the boundary conditions from the right
G(2,2") =0=Fk{In(2) + &k,
ky = —ky In(2)

Gr(z,2") is thus

Gr(x,2") =k In(x) — ky In(2)
()

at £ = 2’ we enforce continuity

(46)



and the jump condition on the derivative
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the determinant of the matrix is In(z’) — In ( /)

we have

The greens function is thus
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In(z’)(In(z)—In(2)) (65)
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1.2.3 Create a code that plots on the same figure the function G(x,5/4)
using the two different methods. Hand in the code and the
figure.

using GLMakie

function problem123()

# figure definition

fig = Figure()

ax = Axis(fig[1l, 17,
title = "patching and eigenfunction expansion method",
xlabel = L"$x$",
ylabel = L"$G(x, \frac{5}{4})s$",
ylabelrotation = 0)

# function definition eigenfunction expansion solution
Gn(x, xp, n) = (
4*1og(2) / (xp*n*m*(sin(2*m*n)-(2*m*n))) *
sin(n*m*log(xp)/log(2)) *
sin(n*m*log(x)/log(2))
)
# function definition patching method solution
G(x, xp) = (
X < xp ?
log(x)*(log(xp) - log(2)) / log(2)
log(xp)*(log(x) - log(2)) / log(2)

)
x = LinRange(1.0, 2.0, 1000)
y = Vector{Float64}(undef, length(x))
# calculate eigenmodes for each x
for i in eachindex(x)

Y =0.0

# keep 1000 eigen modes

for n in 1:1000

Y += Gn(x[1], 5.0/4.0, n)

end

ylil = %
end

# add the two plots to the figure



lines!(ax, x, y, color = :blue, label = L"$\phi$ expansion", linestyle = :dash)
lines!(ax, x, G.(x, 5.0/4.0), color = :red, label = "patching")

Legend(fig[1l, 2], ax)

save("probleml23.png", fig)

end

probleml23();
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Figure 1: Plot of the Green’s function over the domain [1, 2] for the eigen
function expansion solution, and the patching method solution

2 Problem 2

Consider the diffusion equation
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with boundary conditions and initial condition



where F'(t) is generic , but you may assume that it satisfies F(0) = 0.

2.0.1 Recast this problem into one that has homogeneous boundary

conditions.
2.0.1.1 Solution
We introduce an auxillary function

X

plz,t) = F(t) (1 — E)

taking some partial derivatives we have

dt — dt

du_dF(1 x)
L

o _
dz?

we assume the solution has the following form:

B(z,t) = v(z,t) + p(x,t)

plugging into (66)

Uy + My = D(vll + :ua,w)
dF x
vt—’_ﬁ(l_Z) _‘szz

with boundary and initial conditions
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0(0,4) = B(0,£) — u(0,1) (75)
= F(t)—F(t) (76)
=0 (77)
o(Lyt) = B(L,t) — p(L,t) (78)
=0 (79)
v(x,0) = B(z,0) — p(x,0) (80)
x
—0— F(0) (1— Z> (81)
=0 assuming F(0) =0 (82)
The problem thus becomes
T 2
@@ (- 1) =Dgx
v(0,t) =v(L,t) =0 (83)
v(z,0) =0
2.0.2 Find the solution for unspecified F(t).
2.0.2.1 Solution
We assume solution of the following form:
. /NTT
v(z,t) = an(t) sin (T) (84)

Vn
plugging into the DE we have
dy,, . [nrx dF T n2m2 . /nmx
;Wsm< L )JFE(l*Z) **D; L2 d’”sm( L ) (8)

let us multiply by the eigenfunction indexed by m and integrate on both sides
from [0, L]
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We use method of integrating factor.

Let

u(t) = e [ DA, dt

— o-DA

multiply by wu(t) on both sides and factor

d

% (eiDAmtwm) = fme

—DA,t

m

t
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t
Un(t) = Pt [ f(r)e Pl Tdr 4,
0

applying the initial condition:

2the integration is from wolfram alpha
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The solution to the IVP is thus

t
() = DAt / fre DAy (98)
0

The solution to the full problem is thus

B(z,t) = F(t) (1 - %) +n§sm ("—f)emnt /Ot foe Pt dr  (99)

where
n2n?
and
dF [ L(mn — sin(mn))
_ % i S 101
== (M (101)

2.0.3 Create a code that plots the solution B(z,t) for F(t) = sin (4nt),
L =1, D=1, at representative time steps. Hand in code and
figure.

L(mn — sin(7n))
. = —dr cos(4nt) (W (102)
function problem203()

# constants

L=1.0

D=1.0

# functions

F(t) = sin(4*m*t)
An) = -n"2 * w2 / L2
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end

fn(n, t) = -4*m * cos(4*m*t) * (L * (m*n - sin(m*n))) / (n"2 * n"2)

# integral solved using kronrod quadrature
function integral term(n, t)
integrand(t) = fn(n, t) * exp(clamp(-D * A(n) * (t - T), -700, 700))
try
return quadgk(integrand, 0, t, rtol=le-3, atol=1le-10)[1]
catch e
@warn "Integration failed for n=$n, t=$t with error: $e"
return 0.0 # Return 0 if the integration fails

end
end
function B(x, t)
sum = 0.0
# 50 eigen modes
for n in 1:50
sum += exp(D*A(n)*t)*integral term(n, t)*sin(n*m*x/L)
end
return F(t) * (1 - x/L) + sum
end

tsteps = [0.0, 0.1, 0.2, 0.3, 0.6]
x = LinRange (0.0, L, 100)
fig = Figure()
ax = Axis(fig[1, 1],
title = "The solution at representative time steps",
xlabel = "x",
ylabel = "B(x, t)",
ylabelrotation = 0)
for t in tsteps
y = [B(xi, t) for xi in x]
lines!(ax, x, y, label = "t = $t")
end

Legend(fig[1l, 2], ax)
save("problem203.png", fig)

problem203();
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The solution at representative time steps
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Figure 2: Plot of the solution at representative time steps
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