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1 Problem 1

For each of the follwing 3 ODEs,

Plot the numerical solution for € € {0.1,0.01,0.001}

Explain in a few words what method you plan to use to solve this asymptotically and why, based on the
numerical solution

Find the lowest order uniformly convergent analytical approximation to the solution for small positive e
Compare the numerical and analytical solutions for e = 0.01



1.1 ODE A

1.1.1 Plot
Let
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Figure 1: Solution trajectories ¢ € [0,50] for € € {0.1,0.01,0.001}. See 3.1.1.1 for code.

In order to produce a uniformly convergent approximation we are going to have to employ multiple time
scales, the problem oscillates fast and decays slowly in time. Since the equation has no explicit function in
time (no w(t)) terms we can expect method of multiple time scales to work.

1.1.2 Solution
Let



dr,
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Let us find the first and second derivative operators
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Let f(ry,m) = fo +€fi
plugging this into (1) we have
LHS:
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RHS:
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the lowest order in the expansion is

603

the solution of which is

fo(mg,71) = A(7y)e’™ + A*(y)e™ "™

where A and A* are complex conjugates

the next order ODE is

(11)



>*fi & fo of,
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Let us plug in our result for f, into (17)
RHS:
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expanding we have
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on on

Notice the equation is symmetric, matching terms in ie’™ and recalling that AA* = |A|? let us solve the
following ODE:

0A
2671 = —|A]?A (21)
Recall A = |Ale®
d|A
2 3'71' — AP (22)
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Let us plug in the initial conditions into (15)

£(0.0) = A(0) + A*(0) = 1 (25)
2R(A(0)) = 1 (26)
A4(0)] = 5 (27)



afy

5T (0) = iA(0) = i4*(0) =0

iA(0) = iA*(0)

(29) implies that A is real valued at time ¢ = 0, thus § =0

plugging this result into (24) for 7; = 0 we have
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and

fo(mo, 1) = A(e'™0 +e7"0)
= 2A(7y) cos T,

finally, it is apparent that A < 1 always, thus we can drop the negative term and we have:
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1.1.3 Compare
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Figure 2: Solution trajectories t € [0, 30] for e = 0.01. See 3.1.1.1 for code.

1.2 ODE B
2 4
{%=—f+ef<‘;—f)
fO)=1 o) =0
1.2.1 Plot
Let

up = f (40)
af Uy = Uy
Uy = E (41) P 4
Uy = —Uy + €U Uy
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Figure 3: Numerical solution for € € [0.1,0.01,0.001]. See 3.1.1.2 for code.

We can see after numerically solving the ode from ¢ € [0,300] and plotting only for ¢ € [275,300] that the
trajectories do not decay, but the frequency or the period of the motion varies with € as t — co. Thus we will
use the method of strained coordinates to find a uniform expansion.

1.2.2 Solution
Let

I=fteh (44)
T=1t(1+ ae) (45)
the derivatives of % are
d dfd 0
S U~ (14a0) 5 (ot ) (16)
d? 0?
oL = (1400® o5 (ot ) (47)

Plugging this into (39) we have
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matching orders of € we have:

O(e%):

9% fy
or2

=1y

with initial conditions f,(0) = 1 and %(0) = 0 we have the particular solution:

fo(7) = cos(7)

82, L9, 9fo\"
or? th=-2 or? +fo (E)

= 2a cos(T) + cos(7)(—sin(7))*

= 2a cos(T) + 1i6 (cos(57) — 3 cos(37) + 2 cos(T))

1 3 1
= <2a + §> cos(T) — 16 cos(37) + 6 cos(57)
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(48)

(49)

(54)

in order to eliminate the source of non-uniformity, we pick an a such that terms in cos(7) are eliminated.

2 +1 0
a —- =
8
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“T 716
thus we have found that
€
- 1——)t
T ( 16

and the uniform expansion is thus:

fo(t) = cos {(1 — liG) t]

(55)

(56)



1.2.3 Compare
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Figure 4: First order approximation of the solution in red-dashed plotted over the numerical solution in blue
for e = 0.01. See 3.1.1.2 for code.

Here just as in Figure 3 we plot the numerical solution with ¢ = 0.01 and our uniform expansion for
t € [275,300] to show that the solution found is correct.

1.3 ODE C
d>f df _
GW-F%—F(t—Fl)f—O 59
{f(O)—l F1) =2 59)
1.3.1 Plot
Let
U = J; ; (60) Uy = (62)
Uy = or (61) vy = —% (g + (t + 1)uy) (63)
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Figure 5: The Solution of the BVP at e € {0.1,0.01,0.001}. See 3.1.1.3 for code.

We find the solution using Boundary Value Theory, noticing that the boundary layer is at t =0

1.3.2 Solution
Solve for (59) when e =0

we solve by method of integrating factor.

d-fout

1 =
dt +(t+ )fout 0

u(t) = e (t+1)dt

10



multiplying through by integrating factor,

d
— = (51 (1) =0 (63)
€5 Lt = ¢, (69)
Jout(0) = e+ (70)

applying boundary condition opposite of boundary layer,

four(1) =2 = e 2142 (71)
¢, =23 (72)
thus the solution outside of the BL is
Four(t) = 2e2 €731+ (73)
(74)

To find the inner solution we rescale the ¢ coordinate.
Let s = % such that ¢ = se* where o > 0, and s = O(1) when ¢t = O(¢*) within the boundary layer.

this leaves us with the equation

d?f; af;
12« 7 —Q wmn
ds? te ds

€ + (se*+1)f,, =0 (75)

Notice here that se* is small compared to 1, and when applying the boundary condition f;,(s = 0) = 1,

fin, = O(1) in the boundary layer. Let us neglect the term se® assuming it is much smaller than 1.

we have that

1—2« dgfi e dfin

i alin (76)

€

Let us neglect the —f;,, term and find the dominant balance for the following:

6172& d2f1 ~ @ dfin
ds? ds

we set powers of epsilon equal to eachother and solve for «
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1—2a=—«a

a=1

plugging in alpha into (77) we solve the following ode:

1 dein 1 dfzn
€ ds? € ds

d2fz'n dfzn
ds? + ds

~(

~e~(

the general solution of which is:

fin(s) = + 62675

we plug in the boundary condition at the boundary layer,

Jin(0) =1=1c; +cy

using Prandtle’s matching condition,

lim (¢; + cye™®) = lim (2636’%(”2>>

s—00 t—0

3
c) = 2e2

where ¢, represents the common limit of Prandtl’s matching condition which we will call L

1=2¢3 + ¢y
Cy = (1—263)

we can now assemble the solution for f(t)

Recall that s = ¢

€

f(t) = fzn(t) + fout(t) —L

226/%/4- (1 — Qe%) e~ +2e3e3(t+2) —}é%/

= (1 — 2€%> e ¢ +2e3e 342
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1.3.3 Compare
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Figure 6: Numerical vs analytical solution of the ODE C Problem ¢ = 0.01. See 3.1.1.3 for code.

2 Problem 2

Find the eigenvalues and eigenfunctions of this eigenvalue problem, in the limit where the eigenvalue A is very
large and positive.

(91)

2.1 Solution

We solve the problem using WKB theory assuming our large eigenvalue is a function of a small parameter
e << 1.

Let

SZx

€ f=r+eh (95)
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Let us find the derivative operators

= 0 01,
v Ox
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Plugging this into (91) we have
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equating terms in order O(e %)

In order to eliminate secular terms we have:

9%(@,) = (z+1)°
g (x,)=(x+1) where z>0 Vz
g'(xs) =1
g(xy) z/ z+ 1dz
1

1
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) (foteh)+ o @41 (o +efi) =0 (102

(103)



the general solution to the PDE (103) is thus

folzs, xf) = A(z,) cos(a:f) + B(x,) sin(scf)

Let us find the coefficients A(x,), B(x,) by matching terms in the next order O(e™!)
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plugging in the partials of (109) into the RHS:

, , (0B 04
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equating terms in cos(z,) we have:

dB
—B—2 1 =0
@+ 1
dB 1
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1
/—dB =—= dz,
s+ 1
In(B) = ) ln(m +1)+¢
c
B(z,) = ———
(IS) m

since B(x,), A(z,) are the same equation we can write out the first order approximation as:

COS Jff sin JTf

folzs J/’f) \/7 \/—

Recall that (93) and (94)

folz) = “ cos(é<x2+2x3)>+\/:2ﬁsin(é($2+2x3)>

(109)
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Plugging in boundary conditions we have:

l
)=—4=0
fO( ) \/5
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cy . 5 )
2 < _— —
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solving epsilon for the zeros of the sine function
5
— =nw
2e
5
- 2nm

the coefficient ¢, is an undetermined coefficient.

the eigen function and eigenvalues are:

2 L 9p — 1 2 2
¢n<x>:sm(7m<“”> An:*:(ﬂ) for m=123...

5

the first order approximation of the BVP is

3 Appendix

3.1 Code
3.1.1 Problem 1
3.1.1.1 Part A
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using GLMakie
using DifferentialEquations
using StaticArrays

odel(u, p, t) = SVector{2}(ul[2], -u[l] -p*u[2]*(u[l]"2.0))
fOp(t, €) = 2.0*cos(t) / sqrt(4.0 +e*t)
function plpa()
# tspan, initial conditions, params
€ = SVector{3}(0.1, 0.01, 0.001)
t0 = 0.0
tf = 50.0
u@ = SVector{2}(1, 0)
tspan = LinRange(t0, tf, 1000)
# figure stuff
fig = Figure()
ax = Axis(fig[1, 1],
title = L"$\frac{d"2f}{dt"2} = -f -\epsilon "2 \left(\frac{df}{dt}\right)s$",
xlabel = "time"

for p in €
# solve ode
sol = solve(ODEProblem(odel, u0, (t0, tf), p),
Tsit5(), saveat=0.01, abstol= le-8, reltol = le-8)
# plot solution
lines!(ax, sol.t, sol[l, :], label = "e = $p")
end
lines!(ax, tspan, fOp.(tspan, 0.01), color = :red, linestyle = :dash)
Legend(fig[1l, 2], ax)
display(fig)
#save("plpa.png", fig)
end
function plpd()
# tspan, initial conditions, params

€ =0.01
t0 = 0.0
tf = 30.0
ud = SVector{2}(1, 0)

tspan = LinRange(t0, tf, 1000)

# figure stuff

fig = Figure()

ax = Axis(fig[1l, 1],
title = L"$\frac{d"2f}{dt"2} = -f -\epsilon "2 \left(\frac{df}{dt}\right)s$",
xlabel = "time"

)

# solve ode

17



sol = solve(ODEProblem(odel, u@, (t0, tf), €),
Tsit5(), saveat=0.01, abstol= 1le-8, reltol = le-8)
# plot solution
lines!(ax, sol.t, sol[l, :], label = "numerical")
lines!(ax, tspan, fOp.(tspan, €), color = :red, linestyle = :dash, label = "fo(t)")
Legend(fig[l, 2], ax)
#display(fig)
save("plpd.png", fig)
end

3.1.1.2 Part B

using GLMakie
using DifferentialEquations
using StaticArrays

ode2(u, p, t) = SVector{2}(u[2], -ull] + p * u[l] * u[2]"4.0)
function p2pa()

# tspan, initial conditions, params

€ = SVector{3}(0.1, 0.01, 0.001)

t0 = 0.0
tf = 300.0
ud = SVector{2}(1, 0)

# figure stuff

fig = Figure()

ax = Axis(fig[1l, 17,
title = L"$\frac{d"2 f}{dt"2} = -f + \epsilon f \left(\frac{df}{dt}\right)~4s$",
xlabel = "time"

)

for p in €
sol = solve(ODEProblem(ode2, u@, (t0, tf), p),

Tsit5(), saveat=0.01, abstol= le-8, reltol

idx = findall(t -> t >= 275.0, sol.t)

le-8)

lines!(ax, sol.t[idx], sol[1l, idx], label = "e = $p")

end

Legend(fig[l, 2], ax)

#display(fig)

save("p2pa.png", fig)
end

fo(t, €) = cos((1.0 - (€)/16.0)*t)
function p2pd()
# tspan, initial conditions, params

€ =0.01
to0 = 0.0
tf = 300.0

18



tspan = LinRange(275.0, tf, 10000)

ud = SVector{2}(1, 0)

# figure stuff

fig = Figure()

ax = Axis(fig[1l, 1],
title = L"$\frac{d"2 f}{dt"2} = -f + \epsilon f \left(\frac{df}{dt}\right)~4$",
xlabel = "time"

)

sol = solve(ODEProblem(ode2, u0, (t0, tf), €),
Tsit5(), saveat=0.01, abstol= 1le-8, reltol = le-8)

idx = findall(t -> t >= 275.0, sol.t)

lines! (ax, sol.t[idx], sol[1l,idx], label = "numerical")

lines!(ax, tspan, fo.(tspan, €), linestyle = :dash, label = "fo(t)", color = :red)

Legend(fig[1l, 2], ax)

#display(fig)

save("p2pd.png", fig)

end

3.1.1.3 Part C

using GLMakie

using DifferentialEquations
using StaticArrays

using BoundaryValueDiffEq

function odec!(du, u, p, t)

du[l] = u[2]

du[2] = -1.0/p * (u[2] + (t + 1)*u[l])
end

function bc!(res, u, p, t)
res[1] = u[1][1] - 1.0
res[2] = u[end][1] - 2.0

end

function init guess(x)
[1.0 + x, 0.0]
end

function f(t, €)
(1 - 2.0%exp(3.0/2.0))*exp(-t/€) + 2.0*%exp(3.0/2.0)*exp(-(t/2.0)*(t+2.0))
end

function p3pa()

€ = SVector{3}(0.1, 0.01, 0.001)
fig = Fiqure();display(fig)
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ax = Axis(fig[1l, 1],
title = L"\epsilon \frac{d"2 f}{dt"2} + \frac{df}{dt} + \left(t + 1\right)f = 0",
xlabel = "time")
for p in €
prob = BVProblem(odec!, bc!, init guess, (0.0, 1.0), p)
sol = solve(prob, Shooting(Vern7()), saveat = 0.01)
lines!(ax, sol.t, sol[l, :], label = "e = $p")
end

Legend(fig[1, 2], ax)
save("p3pa.png", fig)
end

function p3pd()
€ = 0.01
fig = Figure()
tspan = LinRange (0.0, 1.0, 1000)
ax = Axis(fig[1l, 1],
title = L"\epsilon \frac{d"2 f}{dt"2} + \frac{df}{dt} + \left(t + 1\right)f = 0",
xlabel = "time")
prob = BVProblem(odec!, bc!, init guess, (0.0, 1.0), €)
sol = solve(prob, Shooting(Vern7()), saveat = 0.005)
lines!(ax, sol.t, sol[l, :], label = "numerical")
lines!(ax, tspan, f.(tspan, €), label = "f(t)", linestyle = :dash, color = :red)
Legend(fig[1, 2], ax)
display(fig)
save("p3pd.png", fig)
end
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