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1 Question 1
1.1 Part a
Let 𝐴 ∈ ℂ𝑚×𝑚 be invertible and 𝜆 ≠ 0 is an eigenvalue of 𝐴. In the following we will show
that 1

𝜆 is an eigenvalue of 𝐴−1.

Proof.

𝐴𝑣 = 𝜆𝑣 (1)
𝐴−1𝐴𝑣 = 𝐴−1𝜆𝑣 (2)

𝐼𝑣 = 𝜆𝐴−1𝑣 (3)
1
𝜆

𝑣 = 𝐴−1𝑣 (4)

We are left with the equation (4) which is the definition of the eigenvalue.

1.2 Part b
Let 𝐴, 𝐵 ∈ ℂ𝑚×𝑚. In the following we will show that 𝐴𝐵 and 𝐵𝐴 have the same eigenvalues.

Proof. Let 𝑣 be the eigenvectors and 𝜆 be the eigenvalues of the matrix 𝐴𝐵, such
that 𝐴𝐵𝑣 = 𝜆𝑣. Let 𝜔 be a matrix the same size as 𝑣 under the transformation 𝐵𝑣,
such that 𝜔 = 𝐵𝑣.

𝐵𝐴𝜔 = 𝐵𝐴𝐵𝑣 (5)
= 𝐵𝜆𝑣 (6)
= 𝜆𝐵𝑣 (7)
= 𝜆𝜔 (8)

Thus we have that 𝐵𝐴𝜔 = 𝜆𝜔, which is the definition of the eigenvalue.
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1.3 Part c
Let us show that 𝜌(𝐴) ≤ ‖𝐴‖, where 𝜌(𝐴) is the spectral radius of 𝐴 and the norm is any
𝑝-norm.

Recall that the spectral radius of a matrix 𝐴 is defined as

𝜌(𝐴) = sup
𝜆∈𝜎(𝐴)

(|𝜆|) (9)

where 𝜎(𝐴) is the spectrum of 𝐴 or

𝜎(𝐴) ∶= {𝜆 ∈ ℂ ∶ 𝐴 − 𝜆𝐼 is not bijective } (10)

Proof. Let 𝜆 be an eigenvalue of 𝐴, and let 𝑣 ≠ 0 be a corresponding eigenvector.
Then by the submultiplicativity property of Matrix norms, we have,

𝐴𝑣 = 𝜆𝑣 (11)
‖𝜆𝑣‖ = ‖𝐴𝑣‖ (12)

|𝜆|‖𝑣‖ = ‖𝐴𝑣‖ ≤ ‖𝐴‖‖𝑣‖ (13)
(14)

dividing both sides by ‖𝑣‖ we obtain:

|𝜆| ≤ ‖𝐴‖ (15)

since this holds ∀𝜆 ∈ 𝜎(𝐴), we conclude that

𝜌(𝐴) ≤ ‖𝐴‖ (16)

1.4 Part d
Let 𝐴 ∈ ℝ𝑚×𝑚. Let us show that 𝐴 and 𝐴∗ have the same eigenvalues.

Recall that the eigenvalues of the matrix 𝐴 can be found by finding the roots of the
characteristic polynomial,

𝑝𝐴(𝜆) = det(𝐴 − 𝜆𝐼) (17)

Let us show that 𝑝𝐴(𝜆) = 𝑝𝐴∗(𝜆).
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Proof. By the property of the determinant that states that for any given matrix 𝑀,

det(𝑀) = det(𝑀𝑇) (18)

it follows that:

det(𝐴 − 𝜆𝐼) = det((𝐴 − 𝜆𝐼)𝑇) (19)

Since 𝜆 is just a scalar and 𝐼 only has zeros in the off-diagonal entries, we conclude
that

det(𝐴 − 𝜆𝐼) = det(𝐴𝑇 − 𝜆𝐼) (20)
𝑝𝐴(𝜆) = 𝑝𝐴𝑇(𝜆) (21)

Noting that, since 𝐴 is real-valued, its adjoint is just its transpose.

Furthermore, for real matrices, if 𝜆 is a complex eigenvalue of 𝐴, then its complex
conjugate 𝜆̄ is also an eigenvalue. Since 𝐴𝑇 is also real, its eigenvalues must satisfy
the same property. Therefore, 𝐴𝑇 has the same eigenvalues as 𝐴.

2 Question 2
Let 𝐴 ∈ ℂ𝑚×𝑚 be Hermitian. Suppose that for non-zero eigenvectors of A, there exists
corresponding eigenvalues 𝜆 satisfying 𝐴𝑥 = 𝜆𝑥.

2.1 Part a
All eigenvalues of 𝐴 are real.

Proof. Let 𝜆 be an eigenvalue of 𝐴 with a corresponding eigenvector 𝑥 ≠ 0, satisfying
𝐴𝑥 = 𝜆𝑥. Taking the conjugate transpose of both sides,

̄(𝐴𝑥)
𝑇

= ̄(𝜆𝑥)
𝑇
. (22)

Using the transpose property (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 for matrices 𝐴, 𝐵 ∈ ℂ𝑚×𝑚 and noting
that the transpose of a scalar is itself, we obtain

̄𝑥𝑇 ̄𝐴𝑇 = 𝜆̄ ̄𝑥𝑇. (23)
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Since 𝐴 is Hermitian, ̄𝐴𝑇 = 𝐴, so

̄𝑥𝑇𝐴 = 𝜆̄ ̄𝑥𝑇. (24)

Multiplying both sides by 𝑥 on the right,

𝜆̄ ̄𝑥𝑇𝑥 = ̄𝑥𝑇𝐴𝑥 (25)
= ̄𝑥𝑇𝜆𝑥 (26)
= 𝜆 ̄𝑥𝑇𝑥. (27)

Subtracting 𝜆 ̄𝑥𝑇𝑥 on both sides and factoring out ̄𝑥𝑇𝑥 we have,

(𝜆̄ − 𝜆) ̄𝑥𝑇𝑥 = 0. (28)

Since ̄𝑥𝑇𝑥 is positive, it follows that 𝜆̄−𝜆 = 0, implying 𝜆 = 𝜆̄. Thus, all eigenvalues
of 𝐴 are real.

2.2 Part b
Let 𝑥, 𝑦 ≠ 0 be eigenvectors of the Hermitian matrix 𝐴 corresponding to distinct eigenvalues
𝜆, 𝜇 ∈ ℝ, respectively. Then, the eigenvectors 𝑥 and 𝑦 are orthogonal.

Proof. Since 𝐴 is Hermitian, it satisfies the inner product property:

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩, (29)

where 𝐴∗ denotes the conjugate transpose of 𝐴.

In order to prove (29) we will substitute the definition of the inner product:

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩, (30)
(𝐴𝑥)𝑇𝑦 = 𝑥𝑇𝐴∗𝑦, (31)

𝑥𝑇𝐴𝑦 = 𝑥𝑇𝐴∗𝑦. (32)

Since 𝐴 is Hermitian, we have 𝐴∗ = 𝐴, which confirms the equality. Continuing from (29),
we conclude:
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⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴𝑦⟩. (33)

Using the eigenvector relations 𝐴𝑥 = 𝜆𝑥 and 𝐴𝑦 = 𝜇𝑦, it follows that:

⟨𝜆𝑥, 𝑦⟩ = ⟨𝑥, 𝜇𝑦⟩, (34)
𝜆⟨𝑥, 𝑦⟩ = 𝜇⟨𝑥, 𝑦⟩. (35)

Rearranging, we obtain:

(𝜆 − 𝜇)⟨𝑥, 𝑦⟩ = 0. (36)

Since 𝜆 ≠ 𝜇, it must be that ⟨𝑥, 𝑦⟩ = 0, proving that 𝑥 and 𝑦 are orthogonal.

3 Question 3
Let 𝑄 ∈ ℂ𝑚×𝑚 be unitary.

3.1 Part a
If 𝜆 is an eigenvalue and 𝑥 its corresponding eigenvector of the matrix 𝑄, then 𝜆 satisfies
|𝜆| = 1.

Proof. Let 𝑄 ∈ ℂ𝑚×𝑚 be unitary. Recall that 𝑄𝑄∗ = 𝑄∗𝑄 = 𝐼, where 𝐼 is the
identity matrix. The 2-norm of a matrix, also known as the spectral norm, is defined
as ‖𝐴‖2 = √max 𝜎(𝐴∗𝐴), which corresponds to the maximum singular value of the
matrix 𝐴.

It is immediately apparent that the 2-norm of the matrix 𝑄 is equal to the eigenvalues
of the identity matrix.

‖𝑄‖2 = √max 𝜎(𝑄∗𝑄) (37)

= √max 𝜎(𝐼) (38)
= 1 (39)

Thus, the following holds:

‖𝑄𝑥‖2 = ‖𝑥‖2 (40)
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Let 𝜆 ≠ 0 be an eigenvalue and 𝑥 be an eigenvector of the unitary matrix 𝑄 such
that 𝑄𝑥 = 𝜆𝑥. Taking the 2-norm of both sides, we obtain:

‖𝑄𝑥‖2 = ‖𝜆𝑥‖2 (41)
‖𝑥‖2 = ‖𝜆𝑥‖2 (42)
‖𝑥‖2 = |𝜆|‖𝑥‖2 (43)

|𝜆| = 1 (44)

3.2 Part b
‖𝑄‖𝐹 =

√
𝑚.

Proof. Recall that the Frobenius norm is defined as ‖𝐴‖𝐹 = √trace(𝐴∗𝐴). Also,
recall that the trace of a matrix 𝐴 is the sum of its eigenvalues.

It follows that:

‖𝑄‖𝐹 = √trace(𝑄∗𝑄) (45)

= √trace(𝐼𝑚) (46)
=

√
𝑚 (47)

where 𝐼𝑚 is the identity matrix of size 𝑚 × 𝑚 (the same size as 𝑄).

4 Question 4
Let 𝐴 ∈ ℂ𝑚×𝑚 be skew-Hermitian, i.e., 𝐴∗ = −𝐴.

4.1 Part a
The eigenvalues of 𝐴 are purely imaginary.

Proof. Let 𝜆 be an eigenvalue and 𝑣 be an eigenvector of the skew-Hermitian matrix
𝐴, such that 𝐴𝑣 = 𝜆𝑣.
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𝐴𝑣 = 𝜆𝑣 (48)
𝑣∗𝐴𝑣 = 𝑣∗𝜆𝑣 (49)

= 𝑣∗𝐴𝑣 (50)
= (𝐴∗𝑣)∗ 𝑣 (51)
= (−𝐴𝑣)∗ 𝑣 (52)
= (−𝜆𝑣)∗ 𝑣 (53)
= 𝑣∗ (−𝜆̄) 𝑣 (54)

−𝜆̄𝑣∗𝑣 = 𝜆𝑣∗𝑣 (55)

Consider the complex number 𝜆 = 𝛼 + 𝛽𝑖 and note that −𝜆̄ = −𝛼 + 𝛽𝑖.

For the equality −𝜆̄ = 𝜆 to hold,

−𝛼 + 𝛽𝑖 = 𝛼 + 𝛽𝑖 (56)

The real part of the complex number 𝜆 must be zero. Therefore, the eigenvalues of
𝐴 are purely imaginary.

4.2 Part b
The matrix 𝐼 − 𝐴 is nonsingular.

Proof. Let 𝜆 be an eigenvalue and 𝑣 be an eigenvector of the matrix 𝐴, which is
skew-Hermitian, such that 𝐴𝑣 = 𝜆𝑣.

Consider the matrix (𝐼 − 𝐴) acting on the eigenvector 𝑣:

(𝐼 − 𝐴) 𝑣 = 𝐼𝑣 − 𝐴𝑣 (57)
= 𝑣 − 𝜆𝑣 (58)
= (1 − 𝜆) 𝑣. (59)

Hence, the eigenvalues of the matrix (𝐼 − 𝐴) are (1 − 𝜆).

Recall the definition of a nonsingular matrix: for any square matrix 𝐵, if det(𝐵) ≠ 0,
then 𝐵 is said to be nonsingular. Additionally, recall that the determinant of any
square matrix 𝐵 is the product of its eigenvalues.

It follows that

det(𝐼 − 𝐴) ≠ 0, (60)
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because in Part a, we have already shown that the matrix 𝐴 has eigenvalues with
zero real part. Thus, the product of all eigenvalues of the matrix (𝐼 − 𝐴), which we
have shown to be (1 − 𝜆)∀𝜆 ∈ 𝜎(𝐴), is guaranteed to be nonzero.

5 Question 5
We say that 𝐴, 𝐵 ∈ ℂ𝑚×𝑚 are unitarily equivalent if 𝐴 = 𝑄𝐵𝑄∗ for some unitary matrix
𝑄 ∈ ℂ𝑚×𝑚.

5.1 Part a
If 𝐴 and 𝐵 are unitarily equivalent, then they have the same singular values.

Proof. Let 𝐴, 𝐵 ∈ ℂ𝑚×𝑚 be unitarily equivalent.

We begin by proving that if 𝐴 and 𝐵 are unitarily equivalent, then they have the
same eigenvalues. We will then use this result to show that they have the same
singular values.

𝐴 = 𝑄𝐵𝑄∗ (61)
𝐴 − 𝜆𝐼 = 𝑄𝐵𝑄∗ − 𝜆𝐼 (62)

= 𝑄 (𝐵 − 𝜆𝐼) 𝑄∗ (63)
det (𝐴 − 𝜆𝐼) = det (𝑄 (𝐵 − 𝜆𝐼) 𝑄∗) (64)

= det (𝑄) ⋅ det (𝐵 − 𝜆𝐼) ⋅ det (𝑄∗) (65)

Recall from Question 3, Part (a), that we proved if 𝑄 is unitary, then |𝜆| = 1 for all
𝜆 ∈ 𝜎(𝑄). Thus, the determinant of 𝑄 is the product of these eigenvalues, which
equals 1.

Therefore, we obtain the equality

det (𝐴 − 𝜆𝐼) = det (𝐵 − 𝜆𝐼), (66)

implying that the eigenvalues of two unitarily equivalent matrices are the same.

Now consider the matrix 𝐴∗𝐴:

𝐴∗𝐴 = (𝑄𝐵𝑄∗)∗ 𝑄𝐵𝑄∗ (67)
= 𝑄𝐵∗𝑄∗𝑄𝐵𝑄∗ (68)
= 𝑄𝐵∗𝐵𝑄∗. (69)
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Therefore, the matrix 𝐴∗𝐴 is unitarily similar to the matrix 𝐵∗𝐵. Since the
eigenvalues of the matrix 𝐴∗𝐴 are the singular values of 𝐴, and the eigenvalues of
𝐵∗𝐵 are the singular values of 𝐵, it follows that the singular values of 𝐴 and 𝐵 are
equal.

5.2 Part b
If 𝐴 and 𝐵 have the same singular values, then they are not neccessarily unitarily equivalent.

Proof. Let

𝐴 = [1 0
0 0] 𝐵 = [0 1

0 0] (70)

We will show that the eigenvalues of the self-adjoint matrices of 𝐴 and 𝐵 are the
same, which implies that the singular values are also the same.

𝐴∗𝐴 = [1 0
0 0] 𝐵∗𝐵 = [0 0

0 1] (71)

Both self-adoint matrices have eigenvalues 𝜆1,2 = {0, 1}. Hence the singular values
of the matrix 𝐴 and 𝐵 are the same.

Recall the definition of a Normal Matrix. A square matrix 𝑀 ∈ ℂ𝑚×𝑚 is said to
be normal, if it commutes with its conjugate transpose 𝑀∗. That is,

𝑀 is normal ⟺ 𝑀∗𝑀 = 𝑀𝑀∗. (72)

An equivalent definition is that 𝑀 is diagonalizable by a unitary matrix.

Let us assume for the sake of contradiction that the matrices 𝐴 and 𝐵 are unitarily
equivalent. Then there exists a unitary matrix 𝑄 ∈ ℂ2×2 such that

𝐵 = 𝑄∗𝐴𝑄 (73)

for unitary equivalence to hold, it is a requirement that if the matrix 𝐴 is a normal
matrix, then the matrix 𝐵 must also be normal.

𝐴𝐴∗ = [1 0
0 0] = 𝐴∗𝐴 = 𝐴 (74)
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Hence, the matrix 𝐴 is normal.

𝐵𝐵∗ = [1 0
0 0] ≠ [0 0

0 1] = 𝐵∗𝐵 (75)

We have arrived at a contradiction. The matrix 𝐴 is normal, but 𝐵 is not. Therefore
even though both matrices have the same singular values, they are not unitarily
equivalent.

6 Question 6
Find the relative condition number of the following functions and discuss if there is any
concern of being ill-conditioned. If so, discuss when.

6.1 Part a

𝑓1(𝑥1, 𝑥2) = 𝑥1 + 𝑥2 (76)

For the continuously differentiable function 𝑓1, the relative condition number 𝜅 can be
calculated by the following formula:

𝜅(𝑥1, 𝑥2) = ‖𝐽‖∞‖𝑥‖∞
|𝑓1(𝑥1, 𝑥2)|

(77)

Let us find the Jacobian of the matrix, and its max norm (since the Jacobian matrix in this
case is a row vector it is simply the sum of the absolute value of all the entries).

𝐽 = [ 𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦 ] = [1 1] (78)

‖𝐽‖∞ = 2 (79)

Thus the condition number is

𝜅(𝑥1, 𝑥2) = 2 max{|𝑥1|, |𝑥2|}
|𝑥1 + 𝑥2|

(80)

The function is ill-conditioned when 𝑥1 → −𝑥2. Interestingly though the function is well-
conditioned if you restrict 𝑥1 and 𝑥2 to be strictly positive, or that 𝑥1, 𝑥2 ∈ (0, ∞). Then as
you can see in the following plot, at no point does the 𝜅 diverge.
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Figure 1: Plot of the condition number 𝜅(𝑥1, 𝑥2) for 𝑓1 over a strictly positive domain
𝑥1, 𝑥2 ∈ (0, 10000).

6.2 Part b

𝑓2(𝑥1, 𝑥2) = 𝑥1𝑥2 (81)

The Jocabian matrix of the function 𝑓2 is

𝐽 = [ 𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

] (82)

= [𝑥2 𝑥1] (83)

The max-norm of the Jacobian is the sum of the absolute values of the entries. Hence,

‖𝐽‖∞ = |𝑥2| + |𝑥1| (84)

Therefore ∃𝑥1, 𝑥2 ∈ ℝ ∶ 𝜅 the condition number is

𝜅(𝑥1, 𝑥2) = (|𝑥2| + |𝑥1|) max (|𝑥1|, |𝑥2|)
|𝑥1𝑥2|

(85)
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The equation is well-conditioned as long as both 𝑥1 ≪ 1 and 𝑥2 ≪ 1 at the same time.
Another way to say this is when 𝑥1 ⋅ 𝑥2 → 0 the function 𝑓2 approaches a regieme of being
ill-conditioned. This can be clearly see in the following heatmap of the log of the condition
number with 𝑥1, 𝑥2 ∈ (−1, 1).

Figure 2: Plot of the condition number 𝜅(𝑥1, 𝑥2) for 𝑓2 over 𝑥1, 𝑥2 ∈ (−1, 1). The colorbar
is the log10(𝜅)

6.3 Part c

𝑓3(𝑥) = (𝑥 − 2)9 (86)

For a continuously differentiable function 𝑓 of a single variable. The condition number 𝜅 is

𝜅(𝑥) = ∣𝑥𝑓 ′(𝑥)
𝑓(𝑥)

∣ (87)

thus for the function 𝑓3 we have that the condition number is:

𝜅(𝑥) = ∣9𝑥(𝑥 − 2)8

(𝑥 − 2)9 ∣ (88)

= ∣ 9𝑥
𝑥 − 2

∣ (89)
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the function is ill-conditioned as 𝑥 → 2 and approaches 0 as 𝑥 → 0 and is well-conditioned
everywhere else.

Figure 3: Line plot of the log transform of the condition number 𝜅(𝑥) for the function 𝑓3 for
𝑥 ∈ (−1, 5)

Additionally, the condition number approaches the value 10 as |𝑥| → ∞.

7 Question 7
Note that the function 𝑓(𝑥) = (𝑥 − 2)9 in Part c of Question 6 can also be expressed as
𝑔(𝑥) = 𝑥9 − 18𝑥8 + 144𝑥7 − 672𝑥6 + 2016𝑥5 − 4032𝑥4 + 5376𝑥3 − 4608𝑥2 + 2304𝑥 − 512.
Mathematically, the two functions 𝑓 and 𝑔 are identical.

7.1 Part a, b
Plot 𝑓(𝑥) by evaluating its values at the discrete points 1.920, 1.921, 1.922, … , 2.080, which
are equally spaced with a distance of 0.001. Then, over-plot 𝑔(𝑥) at the same set of discrete
points.
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Figure 4: Line plot of the function 𝑓(𝑥) in red and 𝑔(𝑥) in blue over the discrete domain
{1.920, 1.921, … , 2.080}

7.2 Part c
Draw your conclusions from the results of Part c in Question 6 and Parts a and b in this
problem.

7.2.1 Solution

Let us analyze the problem by considering the number of operations each function undergoes.

For the function 𝑓(𝑥) = (𝑥 − 2)9

(×, ÷) ∶ 8
(+, −) ∶ 1

For the function 𝑔(𝑥) = 𝑥9 − 18𝑥8 + 144𝑥7 − 672𝑥6 + 2016𝑥5 − 4032𝑥4 + 5376𝑥3 − 4608𝑥2 +
2304𝑥 − 512

Here we are assuming that once 𝑥9 is calculated the intermediate values are cached.

(×, ÷) ∶ 16
(+, −) ∶ 9
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The function 𝑓(𝑥) is ill-conditioned in the domain 𝑥 ∈ {1.920, ..., 2.080} because (as shown
in Question 6 Part a) the difference inside of the parenthesis has 𝑥1 → 2 when 𝑥2 = 2, more
over this new value which is close to zero is being multiplied with itself many times and (as
we have shown in Question 6 part b) multiplication is ill-conditioned when 𝑥1 ⋅ 𝑥2 → 0.

For the function 𝑔(𝑥) we are less concerned with multiplication because 𝑥 > 1 for every
operation which is well-conditioned, but the increased number of subtractions/additions leads
to an oscillatory result due to the increased risk of catastrophic cancellation and increased
rounding errors.

Interestingly though, if we increase the size of the data type used to plot the two functions
from Float64 → Float128 they are identical as seen in the figure below.

Figure 5: The same plot as Figure 4, but with quadruple precision.

8 Question 8
Theorem 1 (Hermitian Matrix). If 𝐴 ∈ ℂ𝑚×𝑚 is Hermitian, then 𝐴 has real eigenvalues 𝜆𝑖,
where 𝑖 = 1, … , 𝑚, which are not necessarily distinct, and the 𝑚 corresponding eigenvectors
𝑢𝑖 form an orthonormal basis for ℂ𝑚.

Definition 1 (Positive Definite Matrix). A matrix 𝐴 is called positive definite if and only if
⟨𝐴𝑥, 𝑥⟩ > 0 for all 𝑥 ≠ 0 ∈ ℂ𝑚.

Theorem 2 (Principal Axis Theorem). For any Hermitian matrix 𝐴 ∈ ℂ𝑚×𝑚, there exists
a unitary matrix 𝑈 and a diagonal matrix 𝐷 such that 𝐴 = 𝑈𝐷𝑈 ∗, where 𝐷 contains the
eigenvalues 𝜆𝑖 of 𝐴 along the diagonal entries.
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Suppose 𝐴 is Hermitian.

𝐴 is positive definite if and only if 𝜆𝑖 > 0 for all 𝜆𝑖 ∈ Λ(𝐴), the spectrum of 𝐴.

Proof. Assume that 𝐴 is a positive definite hermitian matrix and has an eigenvalue
𝜆 such that 𝐴𝑥 = 𝜆𝑥, where 𝑥 is the eigenvector associated with the eigenvalue 𝜆.

First, let us show that if 𝐴 is positive definite, then all eigenvalues of 𝐴
are strictly positive.

Case 1: 𝜆 = 0. The matrix 𝐴 is not positive definite because this would mean
there exists an eigenvector 𝑥 such that

𝐴𝑥 = 0, (90)
𝑥∗𝐴𝑥 = 0. (91)

By Definition 1, for 𝐴 to be positive definite, we must have 𝑥∗𝐴𝑥 > 0 for all 𝑥 ≠ 0.
This contradiction implies that 𝜆 ≠ 0.

Case 2: 𝜆 < 0. Since 𝑥 ≠ 0, we have

𝐴𝑥 = 𝜆𝑥, (92)
𝑥∗𝐴𝑥 = 𝑥∗𝜆𝑥, (93)

= 𝜆𝑥∗𝑥, (94)
= 𝜆‖𝑥‖2

2. (95)

Since the inner product 𝑥∗𝑥 is a strictly positive real number and 𝜆 < 0, it follows
that 𝑥∗𝐴𝑥 < 0, contradicting Definition 1.

Thus, the only way for a matrix 𝐴 to be positive definite is if all of its eigenvalues
are strictly positive.

Second, let us show that if all eigenvalues of a matrix 𝐴 are strictly
positive, then the matrix is positive definite.

Given that 𝐴 is Hermitian, by Theorem 1, all the eigenvalues of 𝐴 are real (proved
in question 2), and there exists an orthonormal basis of eigenvectors

𝑈 ∶= {𝑢𝑖 ∈ ℂ𝑚|𝑖 = 1, 2, ⋯ , 𝑚}.

Since all eigenvalues 𝜆𝑖 are positive, by Theorem 2, the diagonal matrix 𝐷 has
positive entries.

In order to show that 𝐴 is positive definite, we need to verify that ⟨𝐴𝑥, 𝑥⟩ > 0 for
all non-zero 𝑥 ∈ ℂ𝑚.

Consider any vector 𝑥 ≠ 0 ∈ ℂ𝑚. We can write 𝑥 in terms of the orthonormal
eigenbasis 𝑈 of 𝐴 as:

𝑥 =
𝑚

∑
𝑖=1

𝛼𝑖𝑢𝑖 (96)
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where 𝛼𝑖 = ⟨𝑥, 𝑢𝑖⟩ and similarly ̄𝛼𝑖 = ⟨𝑢𝑖, 𝑥⟩.

Let us now compute the inner product ⟨𝐴𝑥, 𝑥⟩

⟨𝐴𝑥, 𝑥⟩ = ⟨𝐴
𝑚

∑
𝑖=1

𝛼𝑖𝑢𝑖,
𝑚

∑
𝑗=1

𝛼𝑗𝑢𝑗⟩ (97)

= ⟨
𝑚

∑
𝑖=1

𝛼𝑖𝐴𝑢𝑖,
𝑚

∑
𝑗=1

𝛼𝑖𝑢𝑗⟩ (98)

= ⟨
𝑚

∑
𝑖=1

𝛼𝑖𝜆𝑖𝑢𝑖,
𝑚

∑
𝑗=1

𝛼𝑗𝑢𝑗⟩ (99)

=
𝑚

∑
𝑖=1

𝑚
∑
𝑗=1

𝛼𝑖𝜆𝑖 ̄𝛼𝑗 ⟨𝑢𝑖, 𝑢𝑗⟩ (100)

Since we know that the eigenvectors in 𝑈 form an orthonormal basis and are all
orthogonal to eachother,

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

⟨𝑢𝑖, 𝑢𝑗⟩ = 𝛿𝑖𝑗 (101)

Hence, the only non-zero contributions to the sum are when 𝑖 = 𝑗 and we can
re-write (101) as:

⟨𝐴𝑥, 𝑥⟩ =
𝑚

∑
𝑖=1

𝜆𝑖‖𝛼𝑖‖2
2 > 0 (102)

Therefore, assuming that 𝐴 is Hermitian, 𝐴 is positive definite if and only if 𝜆𝑖 > 0
for all 𝜆𝑖 ∈ Λ(𝐴), the spectrum of 𝐴.
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