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Part 1: Numerical Coding problems

Structure of Part 1
code/

| _include/
gauss.h
lu.h
mat.h
utils.h

| Makefile

| _src/
gauss.c
lu.c
main.c
mat.c
utils.c

The code is structured such that inside the code directory, there are two subdirectories (include and src for
source files), along with a Makefile. The src directory contains all .c source files, while the include directory
holds .h header files. Running make builds the executable main inside the code directory, which also creates a
build subdirectory to store compiled object files. Running make clean removes the build directory and its
contents.

Usage
On the command line:
1. Run make to compile the code.
2. Execute one of the following commands:

- ./main gauss Amat.dat Bmat.dat

- ./main lu Amat.dat Bmat.dat

Main code driver

The main.c file contains the entry point for the code, it contains the logic for commandline inputs for

Matrix Utility Functions
The matrix_t data structure, defined in mat.c and mat.h, provides core matrix utilities such as:

- Creation and manipulation functions: printMatrix, copyMatrix, createMatrix, etc.



- Matrix operations: multiplication, subtraction, transposition, row swapping, and more.

Miscellaneous Utilities
The files utils.c and utils.h include functions for:

1. Calculating the error matrix:

E=AX-B, (1)

2. Printing the error matrix in scientific notation.

3. Computing the L2 norm of each column of the error matrix and outputting it to stdout.

Gaussian Elimination with Partial Pivoting
gaussElim

This function, defined in gauss.c and gauss.h, accepts two arguments of type matrix_t (A and B) and solves
the linear system:

AX = B, (2)

where A € R™*™ and B, X € R™*".

The function returns an upper triangular matrix U, which is stored in the memory allocated for the matrix
A. Additionally, the matrix B undergoes the same row transformations as A.

backSubGauss

This function takes an upper triangular matrix U € R™*™ and a transformed matrix B € R™*" as inputs. It
returns a solution matrix X € R™*", which is stored in the memory allocated for the B matrix.

It performs back-substitution on the system:

UX =B (3)

mainGauss

This is the driver code for the Gaussian elimination algorithm. It takes two string arguments, filenamel and
filename2, corresponding to the files containing matrices A and B, respectively. The function performs the
following steps:

Reads matrices A and B from the input files.

Stores a copy of the matrices for later error calculation.
Prints the matrices before applying Gaussian elimination.
Performs Gaussian elimination on A and B.

Prints the matrices after Gaussian elimination.

Performs back-substitution on the system UX = B.
Prints the solution matrix X.

Calculates the error using (1).

Prints the L2 norm of each column of the error matrix E.
Deallocates memory for all allocated matrices.
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LU Decomposition with Partial Pivoting
lu

This function performs LU decomposition with partial pivoting on a given matrix A and saves the row swaps
in a permutation vector s. It takes two arguments of type matrix t:



1. The first argument, A € R™*" represents the matrix in the system AX = B, which will later be
solved using forward and backward substitution.

2. The second argument, s, is a column vector of size m x 1 stored under the matrix_t struct type. It
acts as a permutation vector that records the row swaps applied to A during LU decomposition.

The function stores the results as follows:
- The upper triangular matrix U is saved in the diagonal (¢ = j) and upper diagonal (i < j) entries of A.

- The lower triangular matrix L is saved in the lower diagonal (i > j) entries of A.

backSubLU

The backSubLU function performs LU back-substitution on a given matrix A and matrix B. Here, A contains:
- The upper triangular matrix L in its lower diagonal entries (i > j).
- The lower triangular matrix U in its diagonal and upper diagonal entries (i < 7).

The function also takes the permutation vector s, which records the row swaps performed on A during LU
decomposition.

Steps:
1. Permute B
- Initialize a new matrix Y.

- Copy the entries of B into Y according to the permutation vector s (using the unsigned integer
values stored in s as indices).

- Overwrite B with Y and deallocate Y.
2. Solve the system
- Perform forward substitution to solve LY = B.
- Perform backward substitution to solve UX =Y.

- Store the solution matrix X in B.

mainLU

This is the driver code for the LU factorization algorithm. It takes two string arguments, filenamel and
filename2, corresponding to the files containing matrices A and B, respectively. The function performs the
following steps:

1. Reads matrices A and B from the input files.
2. Stores a copy of the matrices for later error calculation.
3. Prints the matrices before LU decomposition.
4. Performs LU decomposition on A with permutation matrix s.
5. Prints the matrix A after LU.
6. Prints the matrix L.
7. Prints the matrix U.
8. Performs back-substitution on B with LU and permutation matrix s.
9. Prints the solution matrix X.
10. Calculates the error using (1).
11. Prints the L2 norm of each column of the error matrix E.
12. Deallocates memory for all allocated matrices.



A very basic application

Consider the following points in R?,

A(1,2,3) (4)
B(-3,2,5) (5)
C(m, e,—V2) (6)
Let
A=[1 2 3 (7)
B=[-3 2 3 8)
C=[r e —V2| (9)

We want to find the equation for a plane that spans the space represented by the vectors AB= A —B and
AC = A — C. To do this numerically we will construct a system of equations in the form of Ax = b.

Recall that the scalar equation for a plane is as follows:

ar+by+cz=d (10)
if we divide both sides by d we have,
a b c
ot oyt —z=1
der dy+ i (11)
Let
a . b ~ ¢ .
PR A R (12)
such that,
ar+by+cz=1 (13)

this holds as long as d # 0.
Let

- B [,

by the equation (13) we can construct a system of equations in the following way,



ax+by +éz =1 (15)

1 2 3 ] (17
a|=3|+b|2|+c| 5 | =|1 (16)
s e ——V@i L1]
1 2 3 al 17
-3 2 5 |[|p|=]1 (17)
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a
Once the equation is solved we have a solution vector X = |b|. We can plot the plane by solving for the z
¢
component of the equation (13).
ax+by+éz=1 (18)
1—az—b
p= - TOY (19)
¢

The following julia code defines a matrix A containing the columns specified in (14) and a vector b of size
3 with every entry set to one. It then performs lu depcomposition using the LinearAlgebra library and
generates the solution vector x. It then defines a mesh grid and computes the height in the z-axis by (18).

using GLMakie
using LinearAlgebra

function main()
# define A matrix

A=
12 3;
-3 25;
m exp(l) -v2
]
# define b vector with every entry set to one
b = ones(3)
# perform lu decomposition on A

n

= Llu(A)

H*

perform back substitution to obtain solution vector x
=F\Db

X

# decompose solution vector into a, b, c
a, b, c =x

# define a mesh grid
xs = LinRange(-6.0, 6.0, 1000)
ys = LinRange(-2.0, 6.0, 1000)

# function to solve for the z component of every mesh point
zf(x, y) = (1.0 - a*x - b*y)/c



end

zs = [zf(k, 1) for k in xs, 1 in ys]

fig = Figure()
ax = Axis3(fig[1l, 1],
title = "Points A, B, C in R3",

xlabel = "x",
ylabel = "y",
zlabel = "z"

)

xa = A[:, 1]

ya = A[:, 2]

za = A[:, 3]

colors = [:red, :blue, :green]

labels = ["A", "B", "C"]

for i in 1:3

scatter!(ax, xa[i], yalil, za[il, color = colors[i], label = labels[i])
end

surface! (ax, xs, ys, zs, color = :purple, alpha = 0.3)

axislegend()

fig

main()

Points A, B, C in R3

P
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Figure 1: Plot of the plane that is spanned by the points A, B, and C



Part 2: Theory Problems

Question 1

Consider the following system,

6L @

Multiply the last row of the matrix and the right-hand side vector by a large constant ¢ such that ce > 1.
Perform Gaussian elimination with partial pivoting to the modified row-scaled system and discuss what
happens. If solving the resulting system has numerical issues, identify the issues and discus how to improve
the method.

Solution

Consider the true solution to the Ax = b system in (20).

x=A"'b (21)
- A =
- 1; [1—126] (23)

Now let us multiply the bottom row by some large number ¢ such that ce > 1. Let ¢ = 10%°.

Let us consider the numerical case when € = €, ., = 1071¢. (20) becomes,

[134 10120} m - [10220] (25)

Let us proceed now with Gaussian Elimination with partial pivoting. We first swap the two rows such that
R, < R,.

10* 1029 [z 1020 R,
TR e &
10% 1020 T 1020
- { 0 1-10%| |y| ~ [2—10% (27)
Numerically, the value 1 — 106 ~ —10'6 and the value 2 — 10'® &~ —10'6 such that the system becomes,
10+ 1020 T 1020

By performing back substitution we have,



-1

To fix this we propose using the implicit pivoting algorithm, where each row of the augmented matrix is first
scaled by its largest entry in absolute value.

Question 2

Suppose A € C™*™ is written in the block form

_ All A12
A‘[A21 Ay (30)

where A;; € C™" and A,, € C™m™*(m=n)  Agsume that A satisfies the condition: A has an LU
decomposition if and only if the upper-left £ x k block matrix Ay, ;. is non-singular for each k with
1<k<m.

Part a.

Verify the formula

[ I ) 0} {An A12:|:|:A11 Ay, ) (31)
—Ay A I Ay Ay 0 Ay —AyAj AL

which eliminate the block A,; from A. The matrix Ay, — Ay A7 A, is known as the Schur complement of
A, in A, denoted as AAM.

Solution

Let us matrix multiply the following matrices to verify (31).

[ I 0] [AH Au} _ Ay . LSP (32)
—Ay Ay If[Ay Ay AL ATATH A, AL ATTA L F A,
Thus in the bottom left block matrix of A we have that,

Ay —AnI=0 (33)

Thus (31) is identical to (32).

Part b

Suppose that after applying n steps of Gaussian elimination on the matrix A in (30), A, is eliminated row
by row, resulting in a matrix

{AOH g] : (34)

Show that the bottom-right (m —n) x (m — n) block matrix D is again Ay, — Ay AT A,.



Solution

By following the Basic Gaussian elimination algorithm on page 32 of the Numerical Linear Algebra text
book, for the matrix (30), we compute the first step in the algorithm, ro = r, — %Tl' Which translates
to the row operation, subtract each element in row two with their corresponding element in row one times

Ay —1
A, T A21A11 :

|:A11 A12:| N { Ay . Ay, . } (35)
Ay Ay Ay — Ay ATA; Ay — Ay ATA

Which simplifies to
Ay Ay }
- 36
{ 0 Ay—AyAjA, (36)

Thus by performing Gaussian Elimination on the block matrices of A, we have shown that indeed the matrix
D is again Ay — Ay AL A .

Question 3

Consider solving Ax = b, with A and b are complex-valued of order m, i.e., A € C"™*™ and b € C™.

Part a

Modify this problem to a problem where you only solve a real square system of order 2m.

Solution

Let the

Ax=D (37)
system be decomposed as,
such that,

A=A, +iA, (38 A, =Re(A) (41)

X = X; + 1Xq (39 A, =Im(A) (42)

b =b; +ib, (40) x; = Re(x) (43)

X, = Im(x) (44)

b, = Re(b) (45)

b, = Im(b) (46)

Let us substitute the equations into (37)

(A +iAy) (x; +ixy) = (by +1iby) (47)

A1X1 + iA1X2 + 7;A2X1 + 7;2A2X2 = bl + Zb2 (48)
A xy + 1A%, + 1A%, — Ayxy = by + iby (49)
(50)



Let us collect terms for ¢ and write the inequality as a system of equations

Ax; —Ayx, =by (51)
Asx; + A xy, =Db,y (52)
Let us write this in block matrix form
A, —A,| x| _ [by o T
[A2 A1][X2 = b, < AX=Db (53)

the above expression (53) is a block matrix where each block matrix in A is of size m x m, cach block vector
in X and b are of size m.

This is a representation of the original complex system (37) of order m as a real system of order 2m.

Part b

Determine the storage requirement and the number of floating point operations for the real-valued method in
Part a of solving the original complex-valued system Ax = b. Compare these results with those based on
directly solving the complex-valued system using Gaussian Elimination (GE) (without pivoting) and complex
arithmetic. Use the fact that the operation count of GE is (9(’”73) for an m x m real valued system with one
right hand side vector. Pay close attention to the greater expense of complex arithmetic operations. Make
your conclusion by quantifying the storage requirement and the operating expense of each method. Draw
your conlcusion on which method is computationally advantageous.

Solution

Given the fact that the operation count of Gaussian Elimination for a system of order m is 0(%3), for a
system of order 2m such as the one in part a, we have:

= ( = gm (54)

In a square real-valued system of order m, the space required to store each real-valued floating point number
for double precision occupies exactly 8 bytes or 64 bits. This means if we have a matrix A € R™*™ and
a corresponding vector b € R™ then the number of bytes required to store every floating point number is
8(m? + m) bytes.

For a complex-valued matrix of the same order m, each floating point number requires twice the amount
of space because both the real part and the imaginary parts of a complex number are themselves double
floating point numbers, so the storage requirement is 16 bytes per number. Thus the storage requirement for
a complex valued system of order m is 16(m? + m) bytes.

For system of order 2m of real-valued entries discussed in part a the storage requirement is thus

8((2m)* +2m) = 8 (4m? + 2m) (55)
— 32 (m2 + %) (56)

Next, let us consider the number of operations in the case for a matrix A € C™*™. The number of

computations for GE with real-valued entries for a matrix of size m is given as 0(%3) and each multiplication

10



for complex-values requires foiling, which is four times as many multiplications. Thus the computational cost
of perform GE on a matrix with complex values instead of real values is:

mS
(9(%) (57)

This leaves us with the following comparison, organized in the table below:

Order m 2m
Storage 16(m* +m) | 32(m* + 2)
Operations (9(%) (9(%)

As you can see the method for decomposing the system Ax = b into the system A% = b as shown in part a,
requires roughly twice the storage and is twice the computational cost of just performing gaussian elimination
on a complex valued matrix of size m.

11



	Part 1: Numerical Coding problems
	Structure of Part 1
	Usage
	Main code driver
	Matrix Utility Functions
	Miscellaneous Utilities

	Gaussian Elimination with Partial Pivoting
	gaussElim
	backSubGauss
	mainGauss

	LU Decomposition with Partial Pivoting
	lu
	backSubLU
	mainLU

	A very basic application

	Part 2: Theory Problems
	Question 1
	Question 2
	Part a.
	Part b

	Question 3
	Part a

	Part b
	Solution



