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Part 1: Coding Problems
For the following coding problems please navigate to the code directory and run the following:
cd code

make clean

make

This will compile the c program and build the main executable.

Householder reduction to Hessenburg Form (Problem 1)
The module hessenburg.c contains the function hessenburg(), which implements Algorithm 26.1 from the
book by Trefethen and Bau. This function takes a square symmetric matrix A as input and converts it into
Hessenberg form, resulting in a tridiagonal matrix T.

The file a_one.dat contains the data for the following matrix:

A =
⎡
⎢⎢
⎣

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎤
⎥⎥
⎦

(1)

We use the following command:
./main hessenberg a_one.dat

This produces the following tridiagonal matrix, printed to the console:

T =
⎡
⎢⎢
⎣

5.000000 −4.242641 0.000000 −0.000000
−4.242641 6.000000 1.414214 −0.000000
−0.000000 1.414214 5.000000 −0.000000
−0.000000 −0.000000 −0.000000 2.000000

⎤
⎥⎥
⎦

(2)

QR algorithm (Problem 2)
Perform a QR algorithm on the following Matrix

A = ⎡⎢
⎣

3 1 0
1 2 1
0 1 1

⎤⎥
⎦

(3)
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Without Shift

In the module qr.c, the function QRnoshift() implements Algorithm 28.1, the “Pure” QR Algorithm,
from page 211 of the book by Trefethen and Bau. This function first converts the input matrix A into
tridiagonal Hessenberg form. It then iteratively computes the QR factorization of this tridiagonal matrix
using Householder factorization, as implemented in Homework Assignment 4.

The function then computes the matrix multiplication R × Q and extracts the subdiagonal elements into a
column vector x of size (𝑚 − 1) × 1. The 2-norm of this column vector is computed and compared against a
threshold value close to machine precision, 1 × 10−15.

We use the following command:
./main qrnoshift a_two.dat

Which prints the following diagonal matrix to the console:

D = ⎡⎢
⎣

3.732051 −0.000000 0.000000
−0.000000 2.000000 −0.000000
0.000000 −0.000000 0.267949

⎤⎥
⎦

(4)

Thus the eigenvalues of the matrix A are approximately 3.73, 2.0, 0.27.

With Shift

The QRshift function takes in a matrix A assumed to be square and symmetric and converts the matrix in a
diagonal matrix D containing the eigenvalues of A along the diagonal elements by using the QR Algorithm
with shift and deflation as described in the class notes, page 112.

The function performs the following actions on the matrix A.

1. Converts A into tridiagonal Hessenberg Form.

2. Defines a square matrix B initially the same size as A where the size decrements by 1 until the final
2 × 2 matrix.

3. Set a value 𝜇 equal to the last diagonal entry of B.

4. Perform the following actions on B,

5.

QR = B − 𝜇I (5)

6.

B = RQ + 𝜇I (6)

7. Compute the minimum between the error |𝜆𝑛−1 − 𝜆𝑛| and |𝜆𝑛−1 + 𝜆𝑛| and check if it is above 1 × 10−15.
If it is, repeat steps 3 through 7, if it is below then go back to step 2 and decrement the size of B by
one and perform steps 3-7 on this new matrix B.

We use the following command,
./main qrshift a_two.dat

Which prints the following matrix to the console:

D = ⎡⎢
⎣

3.732051 −0.000000 −0.000000
0.000000 2.000000 −0.000000
0.000000 0.000000 0.267949

⎤⎥
⎦

(7)
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Comparison between shift and noshift

Interestingly we can compare the number of allocations it takes to converge to the diagonal matrix output by
both algorithms by running the program with valgrind. By using the following command line call
valgrind ./main qrnoshift a_two.dat

shows that the QR algorithm with no shift used 1, 762 allocations and
valgrind ./main qrshift a_two.dat

the QR algorithm with shift and deflation used 252 allocations a 7× decrease in the number of iterations it
took to converge to the eigenvalues down to the same level of machine accuracy.

Inverse Iteration Algorithm (Problem 3)
Consider the matrix

A =
⎡
⎢⎢
⎣

2 1 3 4
1 −3 1 5
3 1 6 −2
4 5 −2 −1

⎤
⎥⎥
⎦

(8)

the data file associated with this matrix I have defined here to be a_three.dat.

Write a program of the inverse iteration to calculate the corresponding eigenvectors.

Inverse Iteration Algorithm

In the module eigen.c we needed a function that computes the inverse of a matrix. So I wrote a function
called invIP() whose input is a square A symmetric matrix and transforms this matrix into its inverse by the
following steps:

1. Computes the QR decomposition of the matrix using the householder reflector factorization method.

QR = A (9)

2. Computes the inverse of the upper triangular matrix R by iterating backwards along the columns
of the matrix and setting the diagonal elements 𝑟−1

𝑖,𝑖 = 1
𝑟𝑖,𝑖

and the off diagonal elements 𝑟−1
𝑗,𝑖 =

− 1
𝑟𝑗,𝑗 ∑𝑖

𝑘=𝑗+1
𝑟𝑗,𝑘 ∗ 𝑟−1

𝑘,𝑖for 𝑗 = 𝑖 − 1, ⋯ , 0

3. Computes A−1 = R−1Q𝑇

Finally, the inverseIteration() algorithm takes in a matrix A and an initial guess for an eigenvalue 𝜇 and
follows the Inverse Iteration algorithm in the class notes on page 98.

The algorithm

1. Computes B = (A − 𝜇I)−1.

2. Initializes the error ‖𝑟‖ = ∞ and the vector x of random values between [−1, 1] and then normalizes
the vector x such that ‖x‖ = 1.

3. do while ‖r‖ > 𝜖 where 𝜖 = 1 × 10−15

a. Compute

y = Bx
‖Bx‖

(10)
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b. Set r = y − x

c. Set x = y

d. Set 𝑒𝑟𝑟𝑜𝑟 = ‖r‖

4. Print eigenvalue, eigenvector pair

We make the following command line call to the compiled function,
./main inverseiter a_three.dat

Which produces the following output to console:

For the matrix A we have the following eigenvalue, eigenvector pairs.

𝜆1 = −8.028600 (11)

v1 =
⎡
⎢⎢
⎣

−0.263462
−0.659041
0.199634
0.675573

⎤
⎥⎥
⎦

(12)

𝜆2 = 7.932900 (13)

v2 =
⎡
⎢⎢
⎣

0.560145
0.211633
0.776708
0.195382

⎤
⎥⎥
⎦

(14)

𝜆3 = 5.668900 (15)

v3 =
⎡
⎢⎢
⎣

0.378703
0.362419

−0.537935
0.660199

⎤
⎥⎥
⎦

(16)

𝜆4 = −1.573200 (17)

v4 =
⎡
⎢⎢
⎣

−0.688048
0.624123
0.259801
0.263750

⎤
⎥⎥
⎦

(18)

Part 2: Theory Problems
Problem 1
Consider the Householder matrix defined by

H = I − 2vv𝑇

v𝑇v (19)
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Part a

For any nonzero vector v, the matrix is orthogonal and symmetric.

Proof. We need to show that the matrix H is orthogonal,

HH𝑇 = H𝑇H = I (20)

and symmetric,

H𝑇 = H (21)

given that the vector v is nonzero.

Let us show that H𝑇 = H,

H𝑇 = (I − 2vv𝑇

v𝑇v)
𝑇

(22)

= I − 2
(vv𝑇)𝑇

(v𝑇v)𝑇 (23)

= I − 2
(v𝑇)𝑇 v𝑇

v𝑇 (v𝑇)𝑇 (24)

= I − 2vv𝑇

v𝑇v (25)

= H (26)

Therefore H = H𝑇, the householder matrix is guaranteed to be symmetric.

Let us start with the (19) to show that HH𝑇 = H𝑇H = I. Since we just proved that the householder
matrix is symmetric, then it must also be true that H𝑇H = H2.

H = I − 2vv𝑇

v𝑇v (27)

H𝑇H = H2 = (I − 2vv𝑇

v𝑇v)
2

(28)

= I2 − 2vv𝑇

v𝑇v − 2vv𝑇

v𝑇v + 4 (vv𝑇

v𝑇v)
2

(29)

= I − 4vv𝑇

v𝑇v + 4 (vv𝑇

v𝑇v)
2

(30)

If we can show that the matrix P = vv𝑇

v𝑇v is idempotent, or that P = P2 then we know that the
householder matrix H is an orthogonal matrix.

Let us compute P2
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(vv𝑇

v𝑇v)
2

=
v (v𝑇v) v𝑇

(v𝑇v)2 (31)

= (v𝑇v) vv𝑇

(v𝑇v)2 (32)

= vv𝑇

v𝑇v (33)

Therefore,

H𝑇H = H2 = I (34)

Part b

Let a be any non-zero vector and let v = a + 𝛼e1, where 𝛼 = sign(𝑎11)‖a‖2. Show that Ha = −𝛼e1 by direct
calculation.

Solution

Starting from the definition H

H = I − 2vv𝑇

v𝑇v (35)

Ha = (I − 2vv𝑇

v𝑇v) a (36)

= a − 2vv𝑇a
v𝑇v (37)

Let us plug in the definition for v into vv𝑇a.

vv𝑇a = (a + 𝛼e1) (a𝑇 + 𝛼e𝑇
1 ) a (38)

= aa𝑇a + 𝛼ae𝑇
1 a + 𝛼e1a𝑇a + 𝛼2e1e𝑇

1 a (39)

To proceed let us acknowlege some facts,

a𝑇a = ‖a‖2
2 (40)

e𝑇
1 a = a𝑇e1 = 𝑎1 (41)

𝛼2 = (sign(𝑎1)‖a‖2)2 = ‖a‖2
2 (42)

e𝑇
1 e1 = 1 (43)

We are left with

vv𝑇a = a‖a‖2
2 + 𝛼a𝑎1 + 𝛼e1‖a‖2

2 + 𝛼2e1𝑎1 (44)
= a (‖a‖2

2 + 𝛼𝑎1) + 𝛼e1 (‖a‖2
2 + 𝛼𝑎1) (45)
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Let us compute v𝑇v

v𝑇v = (a𝑇 + 𝛼e𝑇
1 ) (a + 𝛼e1) (46)

= a𝑇a + 𝛼a𝑇e1 + 𝛼e𝑇
1 a + 𝛼2e𝑇

1 e1 (47)
= ‖a‖2

2 + 𝛼𝑎1 + 𝛼𝑎1 + ‖a‖2
2 (48)

= 2 (‖a‖2
2 + 𝛼𝑎1) (49)

continuing from (37)

Ha = a − 2
a (‖a‖2

2 + 𝛼𝑎1) + 𝛼e1 (‖a‖2
2 + 𝛼𝑎1)

2 (‖a‖2
2 + 𝛼𝑎1)

(50)

= a − a − 𝛼e1 (51)
= −𝛼e1 (52)

Part c

Determine v and 𝛼 that transforms

H
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝛼
0
0
0

⎤
⎥⎥
⎦

(53)

Solution

Let a =
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

We want to construct a vector v = a + 𝛼e1 such that Ha = −𝛼e1.

this means we need to choose an 𝛼 that satisfies these conditions. Notice that matrix multiplication by a
vector containing all ones means that the vector produced is simply the sum of all the elements along the
rows of the matrix.

Let us compute alpha by the formula 𝛼 = sign(𝑎1)‖a‖2

𝛼 = sign(𝑎1)‖a‖2 (54)

=
√

4 = 2 (55)

Let us choose 𝛼 = −2

Let
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v =
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

−2
0
0
0

⎤
⎥⎥
⎦

(56)

=
⎡
⎢⎢
⎣

−1
1
1
1

⎤
⎥⎥
⎦

(57)

Let us compute vv𝑇

vv𝑇 =
⎡
⎢⎢
⎣

−1
1
1
1

⎤
⎥⎥
⎦

[−1 1 1 1] (58)

=
⎡
⎢⎢
⎣

1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1

⎤
⎥⎥
⎦

(59)

Let us compute v𝑇v

v𝑇v = [−1 1 1 1]
⎡
⎢⎢
⎣

−1
1
1
1

⎤
⎥⎥
⎦

(60)

= 4 (61)

Let us compute H

H = 𝐼 − 2vv𝑇

v𝑇v (62)

=
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

− 1
2

⎡
⎢⎢
⎣

1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1

⎤
⎥⎥
⎦

(63)

= 1
2

⎡
⎢⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥
⎦

(64)

Finally let us compute Ha
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Ha = 1
2

⎡
⎢⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

(65)

= 1
2

⎡
⎢⎢
⎣

4
0
0
0

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

2
0
0
0

⎤
⎥⎥
⎦

(66)

Thus we have shown that with an 𝛼 = −2 and v = a + 𝛼e1 where a =
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

That Ha = −𝛼e1

Part d

Given the vector a = ⎡⎢
⎣

2
3
4
⎤⎥
⎦

, specify a Householder transformation that annihilates the third component of a.

Solution

We would like to find a householder matrix H such that

H ⎡⎢
⎣

2
3
4
⎤⎥
⎦

= ⎡⎢
⎣

⋆
⋆
0
⎤⎥
⎦

(67)

To do this we will construct a column vector v and a corresponding householder matrix H.

Let

a = ⎡⎢
⎣

0
3
4
⎤⎥
⎦

(68)

𝛼 = sign(𝑎2)‖a‖2 (69)

= sign(3)√32 + 42 (70)
= 5 (71)

Let
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v = a + 𝛼e2 (72)

= ⎡⎢
⎣

0
3
4
⎤⎥
⎦

+ 5 ⎡⎢
⎣

0
1
0
⎤⎥
⎦

(73)

= ⎡⎢
⎣

0
8
4
⎤⎥
⎦

(74)

Let us compute vv𝑇

vv𝑇 = ⎡⎢
⎣

0
8
4
⎤⎥
⎦

[0 8 4] (75)

= ⎡⎢
⎣

0 0 0
0 64 32
0 32 16

⎤⎥
⎦

(76)

Let us compute v𝑇v

v𝑇v = [0 8 4] ⎡⎢
⎣

0
8
4
⎤⎥
⎦

(77)

= 80 (78)

Let us compute H

H = 𝐼 − 2vv𝑇

v𝑇v (79)

= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

− 1
40

⎡⎢
⎣

0 0 0
0 64 32
0 32 16

⎤⎥
⎦

(80)

= ⎡⎢
⎣

1 0 0
0 −0.6 −0.8
0 −0.8 0.6

⎤⎥
⎦

(81)

Finally let us compute (67) and show that the third component has been annihilated.

H ⎡⎢
⎣

2
3
4
⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 −0.6 −0.8
0 −0.8 0.6

⎤⎥
⎦

⎡⎢
⎣

2
3
4
⎤⎥
⎦

(82)

= ⎡⎢
⎣

2
−5
0

⎤⎥
⎦

(83)
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Part e

What are the eigenvalues of H for any nonzero vector x?

Solution

starting with the definition of the householder matrix

H = I − 2vv𝑇

v𝑇v (84)

Hv = (I − 2vv𝑇

v𝑇v) v (85)

= v − 2vv𝑇v
v𝑇v (86)

= −v (87)

Thus the eigenvalues of the householder matrix are all −1

Problem 2

Let A be 𝑚×𝑛 and B be 𝑛×𝑚. Show that the matrices [AB 0
B 0] and [ 0 0

B BA] have the same eigenvalues.

Solution

First of all let us acknowlege that the dimension of AB must be of size 𝑚 × 𝑚 and the dimension of BA
must be of size 𝑛 × 𝑛, therefore AB ≠ BA.

Let X = [AB 0
B 0] and Y = [ 0 0

B BA]

We need to show that the matrices X and Y are similar, via a similarity transformation S as follows, i.e.,
X = S−1YS. Let us find S.

X = S−1YS (88)
SX = YS (89)

[E F
G H] [AB 0

B 0] = [ 0 0
B BA] [E F

G H] (90)

[ EAB + FB 0
GAB + HB 0] = [ 0 0

BE + BAG BF + BAH] (91)

equating entries on both sides we have,

1.

EAB + FB = 0 (92)

2.

GAB + HB = BE + BAG (93)

3.

BF + BAH = 0 (94)
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By simply doing an analysis of the compatability of the dimensions for each matrix multiplication and
addition, we can see that

E size 𝑚 × 𝑚 (95)
F size 𝑚 × 𝑛 (96)
H size 𝑛 × 𝑛 (97)
G size 𝑛 × 𝑚 (98)

We choose the matrix S as follows:

S = [I𝑚 −A
0 I𝑛

] (99)

Let us compute the inverse S−1

Recall that in order to compute the inverse of a block matrix we have that

C1 = S11 − S12S−1
22 S21 (100)

= I𝑚 + 0 (101)
C2 = S22 − S21S−1

11 S12 (102)
= I𝑛 + 0 (103)

Thus we have that the inverse of the similarity matrix is

[S11 S12
S21 S22

]
−1

= [S−1
11 + S−1

11 S12C−1
2 S21S−1

11 −C−1
1 S12S−1

22
−S−1

22 S21C−1
1 S−1

22 + S−1
22 S21C−1

1 S12S−1
22

] (104)

= [I𝑚 I𝑚AI𝑛
0 I𝑛

] (105)

= [I𝑚 A
0 I𝑛

] (106)

Let us compute S−1YS

S−1YS = [I𝑚 A
0 I𝑛

] [0 0
B BA] [I𝑚 −A

0 I𝑛
] (107)

= [I𝑚 A
0 I𝑛

] [0 0
B 0] (108)

= [AB 0
B 0] (109)

= X (110)

Since X and Y are similar, they have the same characteristic polynomial, and thus share the same eigenvalues.
(class notes proof 1.39)
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Problem 3
Use the Gerschgorin theorem to show that the matrix

A =
⎡
⎢⎢
⎣

1.0 0.3 0.1 0.4
0.0 2.0 0.0 0.1
0.0 0.4 3.0 0.0
0.1 0.0 0.0 4.0

⎤
⎥⎥
⎦

(111)

has exactly one eigenvalue in each of the four circles

|𝑧 − 𝑘| ≤ 0.1, 𝑘 = 1, 2, 3, 4. (112)

Solution

The Gerschgorin theorem states that for each diagonal entry of A there should be en eigenvalue located
within a disk centered at the value for each diagonal entry on the argand diagram. The radius of this disk is
the sum of all the non-diagonal elements in the corresponding row.

|𝜆 − 𝑎𝑖𝑖| ≤ ∑
𝑗≠𝑖

|𝑎𝑖𝑗| (113)

For 𝑖 = 1 we have a disk centered at the point 𝑎11 = 1, with radius 𝑟1 = 0.3 + 0.1 + 0.4 = 0.8.

For 𝑖 = 2 we have a disk centered at the point 𝑎22 = 2, with radius 𝑟2 = 0.1.

For 𝑖 = 3 we have a disk centered at the point 𝑎33 = 3, with radius 𝑟3 = 0.4.

For 𝑖 = 4 we have a desk centered at the point 𝑎44 = 4, with radius 𝑟4 = 0.1.

Since we know that the eigenvalues of the matrix A and its transpose A𝑇 are the same, we can apply
Gerschgorin’s theorem to A𝑇 as well,

A𝑇 =
⎡
⎢⎢
⎣

1.0 0.0 0.0 0.1
0.3 2.0 0.4 0.0
0.1 0.0 3.0 0.0
0.4 0.1 0.0 4.0

⎤
⎥⎥
⎦

(114)

For 𝑖 = 1 we have a disk centered at the point 𝑎𝑇
11 = 1, with radius 𝑟1 = 0.1.

For 𝑖 = 2 we have a disk centered at the point 𝑎𝑇
22 = 2, with radius 𝑟2 = 0.3 + 0.4 = 0.7.

For 𝑖 = 3 we have a disk centered at the point 𝑎𝑇
33 = 3, with radius 𝑟3 = 0.1.

For 𝑖 = 4 we have a desk centered at the point 𝑎𝑇
44 = 4, with radius 𝑟4 = 0.1 + 0.4 = 0.5.

thus we can bound the disk by the infimum between the two sets of disk radii, i.e., 0.1.

Additionally, since none of the circles overlap we know from the theorem that each of the disks described
above much contain exactly one eigenvalue contained in the disks centered at the points 1, 2, 3, 4 with radius
0.1.
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Problem 4
Let A ∈ ℝ𝑚×𝑚 be real and symmetric that is positive definite. Let 𝑦 ∈ ℝ𝑚 be nonzero. Prove that the limit

lim
𝑘→∞

𝑦𝑇A𝑘+1𝑦
𝑦𝑇A𝑘𝑦

(115)

exists and is an eigenvalue of A.

Proof. Since A is a symmetric positive definite matrix, we know that

1. The eigenvalues of A are real.

2. A is diagonalizable.

3. There is an orthonormal basis of ℝ𝑚 consisting of eigenvectors of A.

Moreover, A may be orthonormally diagonalized into A = VDV𝑇 where V ∈ ℝ𝑚×𝑚 is an or-
thonormal matrix of eigenvectors of A, and D ∈ ℝ𝑚×𝑚 is a real diagonal matrix of eigenvalues
corresponding to each orthogonal eigenvector.

Let v ∈ V be an orthogonal eigenvector, with corresponding eigenvalue 𝜆 such that

Av = 𝜆v (116)

We want to show that (115) exists and is an eigenvalue of A.

Recall that under the transformation A → A𝑘 the eigenvalues of A increase proportionally under
the power, i.e.,

Av = 𝜆v → A𝑘v = 𝜆𝑘v (117)

Thus we can replace the A𝑘v term in the limit as follows,

lim
𝑘→∞

v𝑇A𝑘+1v
v𝑇A𝑘v = lim

𝑘→∞

v𝑇𝜆𝑘+1v
v𝑇𝜆𝑘v (118)

= lim
𝑘→∞

𝜆𝑘+1(v𝑇v)
𝜆𝑘(v𝑇v)

(119)

= lim
𝑘→∞

𝜆𝑘+1

𝜆𝑘 (120)

= lim
𝑘→∞

𝜆 = 𝜆 (121)

This also holds for any non-zero vector y not just an eigenvector, because any non-zero vector y can
be written as a linear combination of the orthonormal eigenvectors of A,

y = 𝛼1v1 + 𝛼2v2 + ⋯ + 𝛼𝑚v𝑚 (122)

where 𝛼𝑖 are scalars and v𝑗 correspond to the eigenvectors contained in V.

Since the above result is the general case and applies to all eigenvectors, it follows that for any
non-zero vector y the limit will converge to atleast one eigenvalue in the spectrum of A.
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Problem 5
Let A ∈ ℝ𝑚×𝑚 be a non-defective matrix with its eigenvalues {𝜆𝑖}𝑚

𝑖=1 and its singular values {𝜎𝑖}𝑚
𝑖=1, satisfying

|𝜆1| ≥ |𝜆2| ≥ ⋯ ≥ |𝜆𝑚|, (123)
𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚 (124)

Let 𝜌(A) be the spectral radius of A and cond(A) = ‖A‖2‖A−1‖2 be the condition number of A. Let A be
normal, i.e., A𝑇A = AA𝑇. Show that

Part a

𝜎𝑖 = |𝜆𝑖|, 1 ≤ 𝑖 ≤ 𝑚 (125)

Proof. Since A is non-defective, we know by the eigenvalue-revealing factorizations, that the
diagonalization A = XDX−1 exists.

Additionally, since A is normal, a unitary diagonalization A = QDQ∗ exists as well.

Let 𝜎(A) ∶= {singular values of A} and Λ(A) ∶= {eigenvalues of A}.

By definition the singular values of the matrix A are the square root of the eigenvalues of the
Gram-Matrix of A.

𝜎(A) = √Λ(A∗A) (126)

= √Λ((QDQ∗)∗(QDQ∗)) (127)

= √Λ(QDQ∗QDQ∗) (128)

= √Λ(QDDQ∗) (129)

= √Λ(QD2Q∗) (130)

= √Λ(D2) (131)

Thus the set of all singular values are equal to the square root of the square of the diagonal matrix
D, or equivalently

𝜎𝑖 = |𝜆𝑖| ∀𝑖 = 1, 2, 3, ..., 𝑚 (132)

Part b

‖A‖2 = |𝜆1| = 𝜌(A) (133)

Proof. The 2-norm of a matrix is defined as:

‖A‖2 = √max(eig(A∗A)) (134)
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We have already shown above that for a normal, non-defective matrix that A∗A = D2, thus

‖A‖2 = √max(eig(D2)) (135)

= √𝜆2
1 (136)

= |𝜆1| (137)

The spectral radius of A, by definition is the largest eigenvalue |𝜆1|.

‖A‖2 = |𝜆1| = 𝜌(A) (138)
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