
1

Lecture Note on AM 213A:
Numerical Linear Algebra

Instructor: Dongwook Lee (dlee79@ucsc.edu)

Written by
Profs. Dongwook Lee, Pascale Garaud, and Mr. Skylar Trigueiro

Contents

1 Introduction and basic tools 3

2 Solutions of systems of Linear Equations 28

3 Solutions of overdetermined linear problems (Least Square prob-
lems) 59

4 Eigenvalue Problems 91

5 Singular Value Decomposition 120

6 Iterative methods for the solution of linear systems 132

2

Chapter 1

Introduction and basic tools

1. Course Description

This introductory course is designed to teach you fundamental topics in Numeri-
cal Linear Algebra. As described in the introduction to our textbook, numerical
linear algebra is really a course in applied linear algebra, in which we learn (i)
applied problems where techniques of linear algebra are used in real life (ii) and
how to solve them numerically.

Over the course of this quarter, we will cover the following topics (not
necessarily in this order):

• How to compute solutions of well-posed linear systems of equations Ax = b
using such as Gaussian elimination, LU factorization, and Cholesky fac-
torization. We will also see a few examples of where such problems may
arise in various applied mathematical research questions.

• How to compute approximate solutions of overdetermined linear system
of equations Ax ≈ b, such as one that may arise from linear least squares
fitting problems. Primary topics include normal equations, orthogonal
transformations, QR factorizations, and some popular orthogonalization
methods such as Gram-Schmidt, and Householder transformations;

• How to find the eigenvector and eigenvalues in eigenvalue problems Av =
λv. Eigenvalue problems arise in a wide ranges of science and engineering
fields and play a key role in the analysis of their stability for instance.
Topics include numerical approaches that allow us to compute eigenvalues
and eigenvectors (e.g., power iteration, Rayleigh quotient iteration, QR
iteration).

• Singular value decomposition and its applications.

• Finally, how to solve linear systems of equations using iterative methods,
which are usually more easily parallelizable than direct methods. This
includes simple methods such as the Jacobi, Gauss-Seidel and Successive
Over-relaxation methods, and more sophisticated Krylov methods includ-
ing Conjugate Gradient, GMRES, Arnoldi, and Lanczos methods.

3

4

In addition to these topics, we will also spend some time learning about sta-
bility issues that arise specifically from the numerical treatment of linear algebra
problems, because numerical arithmetic (specifically, floating point arithmetic)
is not exact. Finally, we will also have a mind towards the use of some of these
algorithms in high-performance computing, and will discuss, when appropriate,
issues such as storage, computing efficiency, and parallelization. For further
information on that last topic, see the AM 250 course.

In this first Chapter, we begin by reviewing some basics of linear algebra,
and introduce some definitions that will be used throughout the course. Note
that this is not meant to be a course on Linear Algebra, but rather, a very brief
recap of material that you should already be familiar with and that is a pre-
requisite for the course (e.g. AM 10 for instance, or any undergraduate Linear
Algebra course). We will then continue by looking at the issues associated with
floating point arithmetic and their potential effect on the stability of matrix
operations.

2. Matrices and Vectors

See Chapter 1 of the textbook

2.1. Matrix and vector multiplications, component notations, inner
and outer products

2.1.1. Basic operations and component notations Given an m×n matrix A,
it has m rows and n columns. Its components are expressed as (A)ij = aij
where i = 1, . . . ,m spans the rows, and j = 1, . . . , n spans the columns. The
coefficients aij can be real or complex.

We can compute the product of A with a vector x as Ax = b, where x has
n entries and b has m entries. Written in component form, this is

Ax = b→ bi =
n∑
j=1

aijxj for i = 1, . . . ,m (1.1)

This can also be interpreted as

b =

a1 a2 . . . an


x1

x2

. . .
xn

 = x1a1 + x2a2 + · · ·+ xnan (1.2)

where the ai are the column vectors of A, showing that Ax = b effectively
expresses the vector b in the space spanned by the column vectors of A.

Being a linear operation, multiplication of a vector by A has the following
properties:

A(x + y) = Ax + Ay (1.3)

A(αx) = αAx (1.4)

5

It is easy to show these properties using the component form (1.1) for instance.

We can also take the product of two suitably-sized matrices. Suppose A is
an m × n matrix, and B is an n × l matrix, then their product C = AB is a
m× l matrix. Component-wise the product is expressed as

cij =
n∑
k=1

aikbkj for i = 1, . . . ,m and j = 1, . . . , l (1.5)

Another way of interpreting the matrix multiplication is column-by-column mul-
tiplication:

C = AB = A

b1 b2 . . . bl

 =

Ab1 Ab2 . . . Abl

 (1.6)

Recall that, in general, matrix multiplication does not commute so AB 6= BA.

2.1.2. Other basic matrix operations The transpose of a matrix A of size
m × n is the n ×m matrix AT whose components are (AT)ij = aji. Note the
switch in indices, so the rows of AT are the columns of A, and vice versa.

For linear algebra with complex matrices, the notion of transpose must be
replaced with that of the adjoint. The adjoint of a complex matrix A of size
m × n is the n ×m complex matrix A∗, which is the complex conjugate of the
transpose of A, so that (A∗)ij = a∗ji. Note that the following applies:

• The transpose and adjoint operations are nearly linear in the sense that
(αA+βB)T = αAT +βBT though one must be careful that (αA+βB)∗ =
α∗A∗ + β∗B∗.

• The transpose and adjoint of a product satisfy (AB)T = BTAT and
(AB)∗ = B∗A∗

A symmetric matrix satisfies A = AT . The complex equivalent is a Hermi-
tian matrix, which satisfies A = A∗.

2.1.3. Inner and outer products. It is sometimes useful to think of vectors as
matrices. By default, vectors are thought of as column-vectors, so that a column-
vector with m components is an m × 1 matrix. However, it is also possible to
consider row-vectors, where an m-component row-vector is a 1×m matrix. It is
easy to see that we can create a row-vector by taking the transpose (or adjoint,
for complex vectors) of a column vector.

With these definitions, we can then define the inner and outer products of
column- and row-vectors as:

6

• The inner product is the product of a 1 × m (row) vector xT with a
m× 1 (column) vector y, and the result is a scalar (a 1× 1 matrix):

xTy =

m∑
i=1

x1iyi1 =

m∑
i=1

xiyi (1.7)

For complex vectors, this becomes

x∗y =

m∑
i=1

x∗1iyi1 =

m∑
i=1

x∗i yi (1.8)

• The outer product is the product of a m × 1 (column) vector x with a
1×m (row) vector yT , and the result is an m×m matrix whose components
are

(xyT)ij = xi1y1j = xiyj (1.9)

Again, for complex vectors this becomes

(xy∗)ij = xi1y
∗
1j = xiy

∗
j (1.10)

2.1.4. Range, Nullspace and Rank The matrix operation x → Ax is a func-
tion from Cn to Cm, which, as we saw, returns a vector Ax that is a linear
combination of the columns of A. However, depending on A, the operation Ax
may generate vectors that only span a subspace of Cm, rather than the whole
of Cm. We therefore define the range of the matrix A as the range of the
function Ax, namely the subspace of Cm spanned by all possible vectors Ax
when x varies in the whole of Cn. Having seen that Ax is necessarily a linear
combination of the columns of A, we have the theorem:

Theorem: The range of A is the subspace spanned by the columns of A.

The nullspace of A is the set of all vectors x such that Ax = 0. Its dimension
is often written null(A) and called the nullity.

And finally the column rank of A is the dimension of the space spanned
by its column-vectors, and the row rank of a matrix is the space spanned by its
row vectors. Even if the matrix is not square, an important property of matrices
is that the row rank and column ranks are always equal (we will demonstrate
this later), so we usually refer to them simply as the rank of the matrix. For a
matrix A of size m× n, we have that

rank(A) + null(A) = n, (1.11)

i.e. the sum of the rank and the nullity is equal to the number of columns of A.

A full rank matrix is a matrix that has maximal possible rank: if the matrix
is m× n, then the rank is equal to min(m,n). This implies that the nullity of a
full rank matrix is n −min(m,n), and is 0 if the matrix has m ≥ n (square or

7

tall matrices) but greater than 0 if the matrix has m < n (wide matrices). Full
rank matrices with m ≥ n therefore have an important property:

Theorem: Given an m× n matrix A with m ≥ n, it has full rank if and only
if no two distinct vectors x and y exist such that Ax = Ay.

The same is not true for matrices with m < n, however.

2.2. The inverse of a matrix

The notion of inverse of a matrix only makes sense when considering square
matrices, which is what we now assume in this section.

A full rank square matrix of size m × m is invertible, and we denote the
inverse of the matrix A as A−1. The inverse A−1 is also of size m×m, and by
definition, satisfies the following property:

Ax = b⇔ x = A−1b (1.12)

for any vector x in Cm. By analogy with earlier, we therefore see that this
expresses the vector x in the space spanned by the columns of A−1. Now,
suppose we construct the m vectors zi such that

zi = A−1ei (1.13)

where the vectors ei are the unit vectors in Cm. Then by definition, Azi = ei.
This implies

AZ = A

z1 z2 . . . zm

 =

Az1 Az2 . . . Azm


=

e1 e2 . . . em

 = I (1.14)

where I is the identity matrix. In short, this proves that AA−1 = I, and it can
easily be proved that this also implies A−1A = I

There are many equivalent conditions for a matrix to be invertible (also
called non-singular). These are, for instance:

8

Theorem: For any given square matrix of size m×m, the following statements
are equivalent:

• A has an inverse, A−1.

• rank(A) = m (the matrix has full rank)

• The range of A is Rm (or Cm, for complex matrices)

• null(A) = 0 (the nullspace is empty)

• 0 is not an eigenvalue of A (see later for definition)

• 0 is not a singular value of A (see later for definition)

• det(A) 6= 0

An important property of the inverse is that (AB)−1 = B−1A−1. In com-
bination with the transpose or the adjoint, we also have that (AT)−1 = (A−1)T ,
and similarly (A∗)−1 = (A−1)∗. For this reason, you may sometimes also find
the notations A−T or A−∗ to denote the successive application of the inverse
and transpose/adjoint – the order does not matter.

3. Orthogonal vectors and matrices

See Chapter 2 of the textbook

3.1. Orthogonality of two vectors

The inner product defined in the previous section, when applied to two real
vectors, is in fact the well known dot product. It therefore has the following
properties:

• The Eucledian length of a vector is defined as ||x|| =
√

xTx (or by
extension, ||x|| =

√
x∗x for complex vectors)

• The cosine of the angle between two vectors x and y is given by

cosα =
xTy

||xT ||||y||
for real vectors or cosα =

x∗y

||x∗||||y||
otherwise (1.15)

• Two non-zero vectors x and y are therefore orthogonal provided their
inner product x∗y = 0. If the vectors are real, this means that they lie at
right-angles to one another in Rm.

From this definition, we can now define an orthogonal set of non-zero vectors,
as a set in which every possible pair of vectors is orthogonal (i.e. all members
of the set are pair-wise orthogonal). An orthonormal set is a orthogonal set
where all vectors have unit length, so ||x|| = 1 for all x.

9

Orthogonal sets have a very important and very useful property:

Theorem: The vectors in an orthogonal set are linearly independent.

Linear independence means that it is not possible to write any vector in the set
as a linear combination of other vectors in the set.

As a corollary, it is sufficient in Cm to find m orthogonal vectors to have a
basis for the whole space Cm. Using the orthogonality property, it is then very
easy to express any vector in Cm as a linear combination of this new orthogonal
basis. Indeed, suppose we have the orthonormal basis {qk}k=1,...,m, and we want
to write the vector b in that basis. We know that it is possible, i.e. that there
is a series of coefficients βk such that

b =
m∑
k=1

βkqk (1.16)

To find the βk coefficient, we simply take the inner product of this expression
with qk (using the fact that the basis vectors have been normalized), to get

βk = q∗kb (1.17)

Hence,

b =
m∑
k=1

(q∗kb)qk =
m∑
k=1

(qkq
∗
k)b (1.18)

where the second expression was obtained by commuting the scalar and the
vector (which can always be done) and re-pairing the terms differently. While
the first expression merely expresses b in the basis {qk}k=1,...,m, the second
expression writes b as a sum of vectors that are each orthogonal projections of
b on each of the qk, and identifies the projection operator onto qk as the matrix
qkq

∗
k. This property will be explored at length later in the course.

3.2. Unitary matrices

An orthogonal matrix is a real square matrix Q of size m × m, satisfying
the property QT = Q−1, or equivalently QTQ = I. Extending this to complex
matrices, a unitary matrix is a complex square matrix Q of size m × m,
satisfying the property Q∗ = Q−1 or equivalently Q∗Q = I.

Unitary (or orthogonal) matrices have the interesting property that their
columns form an orthonormal basis. To see this, simply note that the ij coeffi-
cient of the product of two matrices is the inner product of the i-th row vector
of the first matrix, with the j−th column vector of the second one. In order
words, in the case of the product Q∗Q, and calling qj the j−th column of Q,

(Q∗Q)ij = q∗iqj = Iij = δij (1.19)

where δij is the Kronecker symbol. This proves that the pairwise product of any
two column-vectors of Q is 0 if the vectors are different and 1 is the vectors are
identical – the set {q}k=1,...,m is an orthonormal set.

10

Another interesting property of unitary matrices is that their effect pre-
serves lengths and angles (modulo the sign) between vectors, and as such they
can be viewed either as rotations or reflections. To see why, note how the
inner product between two vectors is preserved by the action of Q on both
vectors:

(Qx)∗(Qy) = x∗Q∗Qy = x∗y (1.20)

This in turn means that the Euclidean norm of a vector is preserved by the
action of Q, and this together with the interpretation of the inner product as
a dot product, also shows that the cosines of the angles are preserved (with
possible change of sign of the actual angle)

4. Eigenvalues and singular values

See Chapter 24 and Chapter 4 of the textbook

4.1. Eigenvalues and eigenvectors

4.1.1. Definition Let us now restrict our attention to square matrices A of
size m×m. If a vector v satisfies the property that

Av = λv (1.21)

for any scalar λ ∈ C, then this vector is called an eigenvector of A and λ
is the eigenvalue associated with that vector. Eigenvectors represent special
directions along which the action of the matrix A reduces to a simple multipli-
cation. Eigenvectors and eigenvalues have very general uses in many branches
of applied mathematics, from the solution of PDEs, to the analysis of the sta-
bility of physical problems, etc. We shall see some of these examples later in the
course.

Note that eigenvectors are not unique but they can be scaled infinitely dif-
ferent ways: if Av = λv, then for any nonzero scalar γ, γv is also an eigenvector
corresponding to λ because A(γv) = λ(γv). For this reason, we usually consider
eigenvectors to be normalized. This tells us that the fundamental object of inter-
est is not really any particular choice of eigenvector, but rather the direction(s)
spanned by the eigenvector(s).

A few definitions: the space spanned by all eigenvectors associated with the
same eigenvalue λ is called the eigenspace corresponding to λ. Within that
eigenspace, multiplication by the matrix A reduces to a scalar multiplication.
The set consisting of all the eigenvalues of A is called the spectrum of A.
Finally, the largest possible value of |λ| over all the eigenvalues in the spectrum
of A is called the spectral radius of A, and is denoted by ρ(A).

4.1.2. Characteristic Polynomials The equation Av = λv is equivalent to
considering a homogeneous system of linear equations(

A− λI
)
v = 0. (1.22)

11

Recall that this system has a nonzero solution v if and only if A − λI is
singular, which is further equivalent to,

det
(
A− λI

)
= 0. (1.23)

The relation in Eq. (1.23) is a polynomial of degree m in λ, and is called
the characteristic polynomial pA(λ) of A, which can be written as,

pA(λ) = λm + · · ·+ c1λ+ c0 (1.24)

= (λ− λ1)(λ− λ2) · · · (λ− λm) (1.25)

with ck ∈ C (or ck ∈ R for real matrices). The roots of pA(λ) are the eigenvalues
of A. Note that this implies that even if a matrix is real, its eigenvalues may be
complex. Finally, to find the eigenvectors, we then solve for each λk,

Avk = λkvk. (1.26)

Example: Consider the matrix

A =

[
2 1
1 2

]
(1.27)

The characteristic polynomial of this matrix is

(λ− 2)2 − 1 = λ2 − 4λ+ 3 = (λ− 3)(λ− 1) = 0, (1.28)

therefore has two distinct roots λ1 = 1 and λ2 = 3, which are the eigenvalues of
A. To find the eigenvectors v1 and v2, we solve(

2 1
1 2

)(
x1

x2

)
= λk

(
x1

x2

)
(1.29)

which tells us that 2x1 + x2 = x1 for v1 and 2x1 + x2 = 3x1 for v2. This then
shows that

v1 =

(
1√
2

− 1√
2

)
and v2 =

(
1√
2

1√
2

)
(1.30)

where both eigenvectors have been normalized. �

Note: This illustrates that when seeking eigenvalues and eigenvectors ana-
lytically, one usually first solves for the characteristic polynomial to find the
eigenvalues λk, and then find the eigenvectors. As we shall see in this course the
numerical approach to finding eigenvectors and eigvenvalues is very different.
This is because the characteristic polynomial turns out not to be too useful as a
means of actually computing eigenvalues for matrices of nontrivial size. Several
issues that can arise in numerical computing include:

• computing the coefficients of pA(λ) for a given matrix A is, in general, a
substantial task,

12

• the coefficients of pA(λ) can be highly sensitive to perturbations in the
matrix A, and hence their computation is unstable,

• rounding error incurred in forming pA(λ) can destroy the accuracy of the
roots subsequently computed,

• computing the roots of any polynomial of high degree numerically is an-
other substantial task.

4.1.3. Multiplicity, Defectiveness, and Diagonalizability Since the character-
istic polynomial can be written as pA(λ) = Πm

i=1(λ − λi), we can define the
algebraic multiplicity of a particular eigenvalue λk simply as the multiplicity
of the corresponding root of pA(λ), i.e., how many times the factor (λ − λk)
appears in pA(λ).

By contrast, the geometric multiplicity of λk is the dimension of the
eigenspace associated with λk. In other words, it is the maximal number of
linearly independent eigenvectors corresponding to λk.

In general, the algebraic multiplicity is always greater or equal to the ge-
ometric multiplicity. If the algebraic multiplicity is strictly greater than the
geometric multiplicity then the eigenvalue λk is said to be defective. By exten-
sion, an m×m matrix that has fewer than m linearly independent eigenvectors
is said to be defective.

Example: The matrix

A =

[
1 1
−1 3

]
(1.31)

has pA(λ) = (λ−1)(λ−3)+1 = (λ−2)2 = 0, hence has an eigenvalue λ = 2 as a
double root. Therefore the algebraic multiplicity of λ = 2 is 2. Let’s assume
that there are two linearly independent eigenvectors v1 and v2. If v1 = (x1, x2)T

then x1 and x2 must satisfy x1 + x2 = 2x1, or in other words x1 = x2 so
v1 = (1/

√
2, 1/
√

2)T . Similarly we seek v2 = (x1, x2)T , and its components must
satisfy −x1 + 3x2 = 2x2, or equivalently x1 = x2 again. This shows that v1 and
v2 are actually the same vector, which implies that the geometric multiplicity
of λ = 2 is only equal to one. This eigenvalue is therefore defective, and so is
the matrix A.

Example: λ = 1 is the only eigenvalue with algebraic multiplicity two for both
matrices: [

1 1
0 1

]
, and

[
1 0
0 1

]
. (1.32)

Its geometric multiplicity, however, is one for the first and two for the latter. �

If m×m matrix A is nondefective, then it has a full set of linearly indepen-
dent eigenvectors v1, · · · ,vm corresponding to the eigenvalues λ1, · · · , λm. If we
let D be the diagonal matrix formed with all the eigenvalues λ1 to λm, and V

13

is the matrix formed by the column vectors v1 to vm (in the same order), then
V is nonsingular since the vectors are linearly independent and we have

AV = VD (1.33)

To see why, note that

AV =

Av1 Av2 . . . Avm

 =

λ1v1 λ2v2 . . . λmvm

 (1.34)

while

VD =

Vλ1e1 Vλ2e2 . . . Vλmem

 =

λ1v1 λ2v2 . . . λmvm


(1.35)

Multiplying on both sides by V−1 yields

V−1AV = D. (1.36)

This shows that A is diagonalizable, i.e., can be put into a diagonal form using
a similarity transformation.

4.1.4. Similarity transformation, change of base Let A and B be two m×m
square matrices. Then A is similar to B if there is a nonsingular matrix P for
which

B = P−1AP. (1.37)

The operation P−1AP is called a similarity transformation of A. Note that
this is a symmetric relation (i.e., B is similar to A), since

A = Q−1BQ, with Q = P−1. (1.38)

A similarity transformation is simply a change of base for matrices, i.e.
B can be interpreted as being the matrix A expressed in the basis formed by
the column vectors of P. As such, many of the geometric properties of A are
preserved. To be specific, if A and B are similar, then the followings statements
are true.

1. pA(λ) = pB(λ).

Proof: Then

pB(λ) = det(B− λI)

= det(P−1(A− λI)P)

= det(P−1) det(A− λI) det(P)

= det(A− λI)

= pA(λ). (1.39)

since det(P−1) = 1/ det(P) for any nonsingular matrix. �

14

2. The eigenvalues of A and B are exactly the same, λ(A) = λ(B), and there
is a one-to-one correspondence of the eigenvectors.

Proof: Let Av = λv. Then

P−1AP(P−1v) = λP−1v, (1.40)

or equivalently,
Bu = λu, with u = P−1v. (1.41)

Also the one-to-one correspondence between v and u is trivial with the
relationship u = P−1v, or v = Pu. �

3. The trace and determinant are unchanged. This can easily be shown from
the fact that the characteristic polynomial remains the same:

trace(A) = trace(B), (1.42)

det(A) = det(B). (1.43)

4.2. Singular values and singular vectors

By contrast with eigenvectors and eigenvalues, singular vectors and singular
values have a very simple geometric interpretation and do not require the matrix
to be square in order to be computed. We therefore consider here any matrix
A of size m × n. The notion of singular values and singular vectors can be
understood easily if one notes first that the image of the unit ball in Rn (or
more generally Cn) is a hyperellipse in Rm (or more generally Cm).

Example: Consider the matrix A =

(
2 1
0 1

)
then if y = Ax, and we only

consider vectors x = (x1, x2)T such that x2
1 + x2

2 = 1, their image y = (y1, y2)T

satisfies y1 = 2x1 + x2 and y2 = x2 so that x2 = y2, x1 = (y1 − y2)/2 and
therefore

(y1 − y2)2

4
+ y2

2 = 1 (1.44)

which is indeed the equation of a slanted ellipse (see Figure 1). �

Figure 1. Image of the unit circle after application of the matrix A.

15

Based on this geometrical interpretation of A, we define the singular
values of A as the lengths of the principal axes of the hyperellipse that is the
image of the unit ball. They are denoted as {σi}i=1,...,k, and are usually ordered,
such that σ1 ≥ σ2 ≥ σ3 · · · ≥ σk > 0. Note that k could be smaller than m.
Then we define the left singular vectors of A, {ui}i=1,...,k, which are the
directions of the principal axes of the hyperellipse corresponding to σi. Finally,
we define the right singular vectors of A, {wi}i=1,...,k, such that Awi = σiui
for i = 1, . . . , k.

Further properties of the singular values and singular vectors, together with
how to compute them, will be discussed later in the course.

5. Norms

See Chapter 3 of the textbook

In much of what we will learn in this course and in AMS 213B, we will need
to have tools to measure things such as the quality of a numerical solution in
comparison with the true solution (when it is known), or the rate of convergence
of an iterative numerical algorithm to a solution. To do so usually involves
measuring the size (loosely speaking) of a vector or a matrix, and in this respect
we have several options that all fall under the general description of norms.

5.1. Vector norms

5.1.1. Definitions of vector norms A norm is a function that assigns a real
valued number to each vector in Cm. There are many possible definitions of
vector norms, but they must all satisfy the following conditions:

• A norm must be positive for all non-zero vectors: ||x|| > 0 unless x = 0,
and ||0|| = 0.

• ||x + y|| ≤ ||x|| + ||y|| for any two vectors x and y. This is called the
triangle inequality

• ||αx|| = |α|||x|| for any vectors x and any real α.

A large class of norms consists of the p-norms. The p-norm (or lp-norm) of an
n-vector x is defined by

||x||p =

(
n∑
i=1

∣∣∣xi∣∣∣p)
1
p

. (1.45)

Important special cases are:

• 1-norm:

||x||1 =

n∑
i=1

∣∣∣xi∣∣∣ (1.46)

16

• 2-norm: (also called the Euclidean length, defined in the previous section)

||x||2 =

(
n∑
i=1

∣∣∣xi∣∣∣2)
1
2

=
√

xTx (1.47)

• ∞-norm (or max-norm):

||x||∞ = max
1≤i≤n

∣∣∣xi∣∣∣ (1.48)

As we shall see, different norms come in handy in different kinds of applications
although in practice the most useful ones are the 1−norm, 2−norm and ∞-
norms.

Figure 2. Illustrations of a unit sphere in R2, ||x|| = 1, in three different
norms: 1-norm, 2-norm and ∞-norm.

Example: For the vector x = (−1.6, 1.2)T , we get

||x||1 = 2.8, ||x||2 = 2.0, ||x||∞ = 1.6. (1.49)

�

5.1.2. The Cauchy-Schwarz and Hölder inequalities When proving various
theorems on stability or convergence of numerical algorithms, we shall sometimes
use the Hölder inequality.

Theorem: For any two vectors x and y,

|x∗y| ≤ ||x||p||y||q, (1.50)

where p and q satisfy 1
p + 1

q = 1 with 1 ≤ p, q ≤ ∞.

The bound is tight in the sense that, if x and y are parallel vectors (such
that x = αy for some α), the inequality becomes an equality. When applied to
the 2−norm, the inequality is called the Cauchy-Schwarz inequality.

17

5.2. Matrix norms

5.2.1. Definitions of matrix norms Similar to vector norms, matrix norms
are functions that take a matrix and return a positive scalar, with the following
properties:

• ||A|| > 0 unless A = 0 in which case ||0|| = 0.

• ||A + B|| ≤ ||A||+ ||B||

• ||αA|| = |α|||A||.

We could, in principle, define matrix norms exactly as we defined vector
norms, by summing over all components aij of the matrix. In fact, a commonly
used norm is the Hilbert-Schmidt norm, also called the Frobenius norm:

||A||F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

(1.51)

which is analogous to the 2−norm for vectors.

An interesting property of this norm is that it can be written compactly as
||A||F =

√
Tr(AA∗) =

√
Tr(A∗A). However, aside from this norm, other more

useful definitions of norms can be obtained by defining a norm that measures
the effect of a matrix on a vector.

Definition: The matrix p-norm of m× n matrix A can be defined by

||A||p = sup
x 6=0

||Ax||p
||x||p

. (1.52)

In practice, what this does is to estimate the maximum amount by which the
p−norm of a vector x can be stretched by the application of the matrix. And
since any vector can be written as x = αx̂ where x̂ is a unit vector in the
direction of x, it suffices to look at the action of A on all possible unit vectors:

||A||p = sup
x̂
||Ax̂||p (1.53)

Some matrix norms are easier to compute than others. For instance, by
this definition, and by the definition of singular values, we simply have

||A||2 = σ1 (1.54)

that is, the length of the largest principal axis of the image of the unit ball.

Let’s also look for instance at the case of the 1−norm, for an m×n matrix
A. We begin by computing

||Ax̂||1 = ||
n∑
i=1

aix̂i||1 ≤
n∑
i=1

|x̂i|||ai||1 (1.55)

18

using the column vectors ai of A, and the triangle inequality. Then, using the
fact that ||x̂||1 =

∑n
i=1 |x̂i| = 1, and noting that ||ai||1 ≤ maxi ||ai||1 for any i,

we have

||Ax̂||1 ≤
n∑
i=1

|x̂i|||ai||1 ≤ max
i
||ai||1

n∑
i=1

|x̂i| = max
i
||ai||1 (1.56)

so ||Ax̂||1 ≤ maxi ||ai||1. As it turns out, the inequality becomes an equality
when x̂ = eI , where I is the index i for which ||ai||1 is largest, so the maximum
possible value of ||Ax̂||1 over all possible unit vectors x̂ is indeed maxi ||ai||1. In
short

||A||1 = max
j

m∑
i=1

∣∣∣aij∣∣∣ (1.57)

It can similarly be shown that

||A||∞ = max
i

n∑
j=1

∣∣∣aij∣∣∣ (1.58)

Finally, the p− norm of diagonal matrices is easy to compute: ||D||p = maxi |di|,
where di is the i-th diagonal component of the matrix D.

5.2.2. Properties of matrix norms Similar to the Hölder inequality, it is possi-
ble to bound the norm of a product of two matrices. For any one of the p−norms
associated with a vector norm, or for the Hilbert-Schmidt/Frobenius norms, we
have

||AB|| ≤ ||A||||B|| (1.59)

In general, the inequality is strict. However, in the special case where one of the
matrices is unitary (orthogonal), and where we use the 2−norm or the Hilbert-
Schmidt/Frobenius norms, we have

||QA||2 = ||A||2 and ||QA||F = ||A||F (1.60)

6. Properties of Machine Arithmetics

See Chapter 13 of textbook + additional material on computer representation of
numbers from various sources

So far, we have merely summarized the most salient results of Linear Algebra
that will come in handy when trying to design numerical algorithms to solve
linear algebra problems. Up to now, every result discussed was exact. At this
point in time, however, we must now learn about one of the most important
issues related to the numerical implementation of numerical algorithms, namely,
the fact that numbers are not represented exactly, but rather, approximately, in
the computer.

Most computers have different modes for representing integers and real
numbers, integer mode and floating-point mode, respectively. Let us now take a
look at these modes.

19

6.1. Integer mode

The representation of an integer number is (usually) exact. Recall that we can
represent an integer as a sequence of numbers from 0 to 9, for instance, as an
expansion in base 10:

anan−1 · · · a0 = an × 10n + an−1 × 10n−1 + · · ·+ a0 × 100. (1.61)

Example: Base 10

159 = 1× 102 + 5× 101 + 9× 100. (1.62)

�

However, the number base used in computers is seldom decimal (e.g., base 10),
but instead binary (e.g., base 2) where one “bit” is either 0 or 1. In binary form,
any positive integers can be written as

anan−1 · · · a0 = an × 2n + an−1 × 2n−1 + · · ·+ a0 × 20. (1.63)

Example: Base 2

159 = 1× 27 + 0× 26 + 0× 25 + 1× 24 + 1× 23 + 1× 22 + 1× 21 + 1× 20

= 100111112. (1.64)

�

A signed integer is typically stored on a finite number of bytes (recall, 1 byte
= 8 bits), usually using 1-bit for the sign (though other conventions also exist).

In Fortran there are two common ways to represent integers, normal and
long types. The normal integers are stored on 4 bytes, or equivalently 32 bits
where one bit is reserved for the sign and the rest 31 bits for the value itself.
On the other hand, the long integers are stored on 8 bytes which are equivalent
to 64 bits, where one bit for the sign and the rest 63 bits for the value.

As a consequence for a given integer type there are only finite numbers of
integers which can be used in programing:

• for normal 4-byte integers: between −231 and 231,

• for normal 8-byte integers: between −263 and 263.

This means that any attempts to reach numbers beyond these values will cause
problems. Note that we have 231 ≈ 2.1 billion which is not so big a number.

20

6.2. Floating-point mode

The base 10 notation (decimal) for real numbers can be written as

anan−1 · · · a0.b1b2 · · · bm
= an × 10n + an−1 × 10n−1 + · · ·+ a0 × 100

+b1 × 10−1 + b2 × 10−2 + · · ·+ bm × 10−m, (1.65)

and by analogy we write a real number in base 2 (binary) as

anan−1 · · · a0.b1b2 · · · bm
= an × 2n + an−1 × 2n−1 + · · ·+ a0 × 20

+b1 × 2−1 + b2 × 2−2 + · · ·+ bm × 2−m, (1.66)

Definition: We note that we can only store finite numbers of ai and bj as
every computer has finite storage limit. This implies that there are cases when
real numbers can only be approximated with finitely many combinations of
ai and bj . The error associated with this approximation is called roundoff errors.

6.2.1. Standard notations In fact, the numbers are not stored as written
above. Rather, they are stored as

2n
(
an + an−12−1 + · · ·+ a02−n + b12−n−1 + · · ·+ bm2−n−m

)
, (1.67)

or

2n+1
(
an2−1 + an−12−2 + · · ·+ a02−n−1 + b12−n−2 + · · ·+ bm2−n−m−1

)
. (1.68)

In the first case an can be chosen to be nonzero by assumption, which nec-
essarily gives an = 1. The first is referred to as IEEE standard and the second
as DEC standard.

Example: The representation of 27.25 in base 2 becomes

27.25

= 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 + 0 · 2−1 + 1 · 2−2

= 11011.012, (1.69)

which can be written in two ways as just shown above:

11011.012 =


24
(

1.1011012

)
IEEE standard,

25
(

0.11011012

)
DEC standard.

(1.70)

�

Definition: In general, this takes of the form of

x = 2k × f, (1.71)

where k and f are called the exponent and mantissa, respectively.

21

6.2.2. Standard Fortran storage types: double vs. single precisions There are
two standard storage types available in Fortran. In addition to them, one can
define any new type as needed in Fortran 90 and above. The two standard
storage types are

• single precision : type REAL(SP). Storage is on 4 bytes (i.e., 32 bits =
1 bit for sign + 8 bits for the exponent + 23 bits for the mantissa),

• double precision : type REAL(DP). Storage on 8 bytes (i.e., 64 bits = 1
bit for sign + 11 bits for the exponent + 52 bits for the mantissa).

Note: The bits in the exponent store integers from L to U , where usually, L
is the lowest exponent, a negative integer; and U is the highest exponent, a
positive integer, with

U − L ≈

 28 for single precision,

211 for double precision,
(1.72)

where

L =

 −126 for single precision,

−1022 for double precision,
(1.73)

and

U =

 127 for single precision,

1023 for double precision.
(1.74)

�

6.2.3. Floating-point arithmetic and roundoff errors Arithmetic using floating-
point numbers is quite different from real arithmetic. In order to understand this
let’s work in base 10 for simplicity. If we represent π in, say, DEC standard, we

get

• a representation up to 2 decimal places (significant digits) is 0.31, and

• a representation up to 6 decimal places (significant digits) is 0.314159.

For a given number of significant digits (i.e., a given length of mantissa),
the “distance” between two consecutive numbers is dependent on the value of
the exponent. Let us consider the following example.

Example: Suppose we have 3 possible values of the exponent, k = −2,−1 and
0, and 2 digits for mantissa. Positive numbers we can possibly create from this

22

condition are

0.10× 10−2

0.11× 10−2

...
0.98× 10−2

0.99× 10−2

 all separated by 10−4 (1.75)

0.10× 10−1

0.11× 10−1

...
0.98× 10−1

0.99× 10−1

 all separated by 10−3 (1.76)

0.10× 100

0.11× 100

...
0.98× 100

0.99× 100

 all separated by 10−2 (1.77)

Here we note that the continuous real line has been discretized which inevitably
introduces roundoff errors. Also, the discretization does not produce equi-
distance uniform spacing, instead the non-uniform spacing depends on the ab-
solute value of the numbers considered. �

Note: The floating-point arithmetic operation is not associative as a result of
roundoff errors. To see this, let’s consider a case with 6-digit mantissa. Let’s
take three real numbers,

a = 472635 = 0.472635× 106, (1.78)

b = 472630 = 0.472630× 106, (1.79)

c = 27.5013 = 0.275013× 102. (1.80)

We see that the floating-point operation fails to preserve associative rule,

(a− b) + c 6= a− (b− c). (1.81)

In the first case, we have

(a− b) + c = (472635− 472630) + 27.5013

= 5.00000 + 27.5013

= 32.5013, (1.82)

23

whereas the second case gives

a− (b− c) = 472635− (472630− 27.5013)

= 472635− 472602.4987︸ ︷︷ ︸
more than 6 digits hence must be rounded off

= 472635− 472602

= 33.0000. (1.83)

As can be seen the error on the calculation is huge! It is of the order of
the discretization error for the largest of the numbers considered (i.e., a and b
in this case). �

6.2.4. Machine accuracy ε It is a similar concept – now with the question of
what is the largest number ε that can be added to 1 such that in floating-point
arithmetic, one gets

1 + ε = 1? (1.84)

Let’s consider the following example:

Example: Consider 6-digit mantissa. Then we have

1 = 0.100000× 101, (1.85)

and then
1 + 10−7 = 0.1000001× 101. (1.86)

However, the last representation exceeds 6-digit limit and hence needs to be
rounded down to 0.100000× 101, resulting

1 + 10−7 = 0.100000× 101. (1.87)

This implies that the machine accuracy is ε ≈ 10−7. �

Note: For floating-point arithmetic in base 2, with mantissa of size m, we have

ε ≈ 2−m =

 2−23 ≈ 10−7 in real single precision,

2−52 ≈ 10−16 in real double precision.
(1.88)

�

6.2.5. Overflow and underflow problems There exists a smallest and a largest
number (in absolute value) that can be represented in floating-point notation.
For instance, let us suppose that the exponent k ranges from -4 to 4, and the
mantissa has 8 significant digits. This gives us that the smallest possible number
in base 10 is

xmin = 0.10000000× 10−4 = 10−4−1, (1.89)

24

and the largest possible number is

xmax = 0.9999999× 104 ≈ 104. (1.90)

Therefore in general, in base 2, we have

xmin = 2L−1 =

 2−127 ≈ 10−38 in real single precision,

21023 ≈ 10−308 in real double precision.
(1.91)

xmax = 2U =

 2127 ≈ 1038 in real single precision,

21023 ≈ 10308 in real double precision.
(1.92)

If the outcome of a floating-point operation yields |x| < xmin then an under-
flow error occurs. In this case x will be set to be zero usually and computation
will continue. In contrast, if |x| > xmax then an overflow error occurs, causing a
fatal termination of program.

7. Conditioning and condition number

See Chapter 12 of the textbook

Having seen that numbers are not represented exactly in the numerical world,
one may well begin to worry about the effects of this approximate representation
on simple things such as matrix operations. In other words, what happens (for
instance) to Ax if the entries of x are only known approximately, or if the entries
of A are only known approximately? Does this have a significant effect or a small
effect on Ax?

As it turns out, this notion is quite general and does not necessarily only
apply to matrices. It is called conditioning and is more generally applied to
any function of x.

Loose definition: A function f(x) (where f and x are either scalars or vectors)
is well-conditioned near the point x0 provided small perturbation δx around
x0 only lead to small perturbations δf = f(x0 + δx) − f(x0). A problem is
ill-conditioned if a small δx leads to a large δf .

What small and large mean, in this definition, can depend on the application of
interest. We would also like to create a number (the condition number) that
can become a diagnostic of the conditioning properties of a problem. To do so,
we now introduce the following more mathematical definitions.

25

7.1. Absolute condition number

For a fixed x0, we define the absolute condition number at x = x0 as

κ̂(x0) = lim
ε→0

sup
||δx||≤ε

||δf ||
||δx||

(1.93)

where δf was defined above. This is therefore the limit, when ε tends to 0, of
the maximum possible value of ||δf ||/||δx|| over all possible δx whose norm is
less than or equal to ε.

If the function f(x) is differentiable, then we can write δf = J0δx in the
limit δx→ 0, where J0 is the Jacobian of f (i.e. the matrix of partial derivatives)
at x = x0. In that case

κ̂(x0) = lim
ε→0

sup
||δx||≤ε

||δf ||
||δx||

= lim
ε→0

sup
||δx||≤ε

||J0δx||
||δx||

= ||J(x0)|| (1.94)

for any p−norm. In short,
κ̂(x0) = ||J(x0)|| (1.95)

7.2. Relative condition number

In many cases, especially when working with floating point arithmetic, it makes
more sense to establish the conditioning of relative changes ||δf ||/||f || rather than
of ||δf || itself. To do so, we consider instead the relative condition number
at x = x0, defined as

κ(x0) = lim
ε→0

sup
||δx||≤ε

||δf ||/||f ||
||δx||/||x||

(1.96)

Using the same trick as above for differentiable functions f(x), we then have

κ(x0) =
||J0||||x0||
||f(x0)||

(1.97)

The relative condition number is more commonly used in numerical linear alge-
bra because the rounding errors (which can be the cause of δx and therefore δf)
are relative to a given x0, see the previous sections.

Example 1: Consider the function f(x) =
√
x, whose derivative (Jacobian) at

any point x > 0 is 0.5x−1/2. The relative condition number

κ =

∣∣∣∣f ′(x)x

f(x)

∣∣∣∣ =

∣∣∣∣ x

2
√
x
√
x

∣∣∣∣ =
1

2
(1.98)

is finite and small, suggesting a well-conditioned problem. Note, however, that
the absolute condition number

κ̂ =
∣∣f ′(x)

∣∣ =
1

2
√
x
→∞ as x→ 0 (1.99)

26

suggesting ill-conditioning as x→ 0. Should we worry about it? The answer is
no – this is a specific case where we care more about the relative changes than
the absolute changes in δx, since it doesn’t make sense to take the limit x→ 0
unless |δx| also goes to 0. �

Example 2: Consider the function f(x1, x2) = x2 − x1. The Jacobian of this

function is the row-vector J =
(
∂f
∂x1

∂f
∂x2

)
= (−1 1). The∞-norm is the sum of

the absolute values of the components of that row (see previous section), namely
||J||∞ = 2, so

κ(x1, x2) =
||J||∞||x||∞
|f(x1, x2)|

=
2 max (|x1|, |x2|)
|x2 − x1|

(1.100)

In this case, we see that there can be serious ill-conditioning in terms of relative
errors when x1 → x2. This recovers our earlier findings for floating point arith-
metic that the truncation errors are always of the order of the largest terms (here
x1 and x2), so the relative error on x2−x1 can be huge compared with x2−x1. �

7.3. Condition number of Matrix-Vector multiplications

Suppose we consider the function that takes a vector x and multiplies the matrix
A to it: f(x) = Ax. In this case, by definition the Jacobian matrix J is the
matrix A, so we can immediately construct the relative condition number as

κ(x0) =
||A||||x0||
||Ax0||

(1.101)

Generally speaking, we would have to stop here, and evaluate κ. However,
suppose we know that A is an invertible square matrix. Then if we write x0 =
A−1Ax0, we have, by this equality, that ||x0|| = ||A−1Ax0|| ≤ ||A−1||||Ax0||
using the matrix multiplication bound discussed in the previous section. So

κ(x0) =
||A||||x0||
||Ax0||

≤ ||A||||A−1|| (1.102)

regardless of x0, for any non-singular matrix A.

7.4. Condition number of the solution of a set of linear equations

Suppose we now want to solve the linear system Ax = b, where b is known
exactly, but some uncertainty exists in the entries of A. What are the impacts
of this uncertainty on the numerical evaluation of the solution x? Since solving
this problem requires computing the function x = f(b) = A−1b, which is a
matrix multiplication by A−1, we can use all of the results of the previous
section to show that the condition number of this problem is bounded by

κ(b) ≤ ||A−1||||A|| (1.103)

as before.

27

7.5. Condition number of a matrix

The quantity ||A||||A−1|| is so important and comes up so often that it is often
referred to simply as the condition number of the matrix A, cond(A). If we
use the 2−norm to compute it, then ||A||2 = σ1, and it can also be shown that
||A−1|| = 1/σm. In that case,

cond(A) = ||A||||A−1|| = σ1

σm
(1.104)

and the condition number of A can be re-interpreted as being related to the
eccentricity of the hyperellipse image of the unit ball.

The following important properties of the condition number are easily derived
from the definition using the 2−norm, and in fact hold for any norm:

1. For any matrix A, cond(A) ≥ 1.

2. For the identity matrix, cond(I) = 1.

3. For any matrix A and nonzero γ, cond(γA) = cond(A).

4. For any diagonal matrix D, cond(D) = maxi |dii|
mini |dii| or in other words, is the

ratio of the largest to the smallest eigenvalue (in absolute value).

Final remarks:

• These results shows that if A is ill-conditioned, then numerical algorithms
that are prone to round-off errors will have problems both with simple
matrix multiplications by A, and with matrix multiplications by A−1 (or
equivalently, with solving any linear problem of the kind Ax = b).

• The reason for this is that the condition number effectively measures how
close a matrix is to being singular: a matrix with a large condition number
has its smallest singular value very close to zero, which means that the
matrix operation is fairly insensitive to anything that happens along that
singular direction. Another way of seing this is that this direction is very
close to being part of the nullspace. A matrix with a condition number
close to 1 on the other hand is far from being singular.

• Notice that the determinant of a matrix is not a good indicator of near
singularity. In other words, the magnitude of det(A) has no information on
how close to singular the matrix A may be. For example, det(αIn) = αn.
If |α| < 1 the determinant can be very small, yet the matrix αIn is perfectly
well-conditioned for any nonzero α.

• The usefulness of the condition number is in accessing the accuracy of so-
lutions to linear system. However, the calculation of the condition number
is not trivial as it involves the inverse of the matrix. Therefore, in practice,
one often seeks for a good estimated approach to approximate condition
numbers.

Chapter 2

Solutions of systems of Linear
Equations

There are many problems in science and engineering that requires the solution
of a linear problem of the kind

Ax = b, (2.1)

where A is a square m×m matrix, and x and b are both m-long column vectors.
In what follows, we will assume that the problem is non-singular, that is, that
we have somehow already demonstrated that det(A) 6= 0.

1. Examples of applications that require the solution of Ax = b

1.1. Fitting a hyperplane to m points in Rm

Given 2 distinct points on a plane (R2), there is only 1 line that passes through
both points. Similarly, given 3 distinct non-aligned points in 3D space (R3), there
is only 1 plane that goes through all three points. Given 4 distinct non-coplanar
points in 4D space (R4), there is only 1 hyperplane that goes through all four
points – and so forth! Finding the equation of this hyperplane requires solving a
linear system of the kind Ax = b. Indeed, the equation for an m−dimensional
hyperplane is the linear equation

a1x1 + a2x2 + a3x3 + · · ·+ amxm = const (2.2)

where x = (x1, . . . , xm)T are the coordinates of a point in the hyperplane, the
coefficients {ai}i=0,...,m are real numbers, and the constant const is arbitrary and
can be chosen to be equal to one without loss of generality. Given m points in
the hyperplane denoted as x(1), x(2), . . . , x(m), we therefore have the system of
equations

a1x
(1)
1 + a2x

(1)
2 + · · ·+ amx

(1)
m = 1

a1x
(2)
1 + a2x

(2)
2 + · · ·+ amx

(2)
m = 1

...

a1x
(m)
1 + a2x

(m)
2 + · · ·+ amx

(m)
m = 1 (2.3)

28

29

which can be re-cast as Ax = b with

A =


x

(1)
1 x

(1)
2 . . . x

(1)
m

x
(2)
1 x

(2)
2 . . . x

(2)
m

...

x
(m)
1 x

(m)
2 . . . x

(m)
m

 , x =

a1

a2

. . .
am

 and b =

 1
1
. . .
1

 (2.4)

The solution of this equation is x = A−1b provided A is nonsingular.

1.2. Solving a partial differential equation

Suppose we want to solve the PDE

∂f

∂t
=
∂2f

∂x2
(2.5)

with some given initial condition f(x, 0) = f0(x). As you shall see at length
in AMS 213B, a simple way of solving the problem consists in discretizing this
equation both in space and time: letting space be discretized as a series of closely
spaced {xi} so xi+1 − xi = ∆x, and similarly time be discretized as {t(n)} so

t(n+1) − t(n) = ∆t, we rewrite the PDE as the discrete equation

f
(n+1)
i − f (n)

i

∆t
=
f

(n)
i+1 − 2f

(n)
i + f

(n)
i−1

∆x2
(2.6)

where f
(n)
i ≡ f(xi, t

(n)). This is called an explicit scheme, because we can then
simply write the solution at the next timestep explicitly as a function of the
solution at the previous timestep.

f
(n+1)
i = f

(n)
i +

∆t

∆x2

(
f

(n)
i+1 − 2f

(n)
i + f

(n)
i−1

)
(2.7)

This can actually be cast more simply as the matrix equation f (n+1) = Cf (n)

where C = I + ∆t
∆x2

M and

M =


. . .

. . .
. . .

1 −2 1
1 −2 1

. . .
. . .

. . .

 and f (n) =



...

f
(n)
i−1

f
(n)
i

f
(n)
i+1
...


(2.8)

In this algorithm, f (n+1) can be obtained simply by matrix multiplication. How-
ever, this explicit algorithm is subject to satisfy a strict stability constraint (see
AMS213B for more information), and better results can be obtained, both in
terms of stability and accuracy, using a Crank-Nicholson scheme, in which

f
(n+1)
i − f (n)

i

∆t
=

1

2

f
(n)
i+1 − 2f

(n)
i + f

(n)
i−1

∆x2
+

1

2

f
(n+1)
i+1 − 2f

(n+1)
i + f

(n+1)
i−1

∆x2
(2.9)

30

that is, by evaluating the time derivative half way between the timesteps t(n) and
t(n+1). This algorithm, by contrast with the previous one, becomes Af (n+1) =
Bf (n) where A = I− ∆t

2∆x2
M and B = I+ ∆t

2∆x2
M. In order to advance the solu-

tion in time, we therefore have to solve a matrix problem for f (n+1). In principle,
this can be done by finding the inverse of A, and evaluating f (n+1) = A−1Bf (n)

at each timestep. While both examples require solving a matrix problem, their

practical use in large-scale computations (e.g. fitting many hyperplanes differ-
ent sets of points, or advancing the PDE in time for many timesteps) is quite
different. In the first case, each set of points gives rise to a different matrix A,
so the problem needs to be solved from scratch every time. In the second case
on the other hand, assuming that the timestep ∆t and the grid spacing ∆x re-
main constant, the matrix A remains the same each time, so it is worth solving
for A−1 just once ahead of time, save it, and then simply multiply each new
right-hand-side by A−1 to evolve the solution forward in time. Or something
similar, at the very least (as we shall see, things are done a little different in
practice).

2. A little aside on invariant transformations

To solve a linear system, we usually transform it step by step into one that
is much easier to solve, making sure in the process that the solution remains
unchanged. In practice, this can easily be done in linear algebra noting that
multiplication of the equation Ax = b by any nonsingular matrix M on both
sides, namely:

MAx = Mb (2.10)

leaves the solution unchanged. Indeed, let z be the solution of Eqn. 2.10. Then

z = (MA)−1Mb = A−1M−1Mb = A−1b = x. (2.11)

These transformations, i.e., multiplication by a non-singular matrix, are called
invariant transformations.

2.1. Permutations

A permutation matrix P, a square matrix having exactly one 1 in each row and
column and zeros elsewhere – which is also always a nonsingular – can always be
multiplied without affecting the original solution to the system. For instance,

P =

 0 0 1
1 0 0
0 1 0

 (2.12)

permutes v as

P

 v1

v2

v3

 =

 0 0 1
1 0 0
0 1 0

 v1

v2

v3

 =

 v3

v1

v2

 . (2.13)

31

�

The same permutation matrix applied to a 3 × 3 matrix A would shuffle its
rows in the same way. More generally, permutation matrices are operations that
shuffle the rows of a matrix.

2.2. Row scaling

Another invariant transformation exists which is called row scaling, an outcome
of a multiplication by a diagonal matrix D with nonzero diagonal entries dii, i =
1, . . .m. In this case, we have

DAx = Db, (2.14)

by which each row of the transformed matrix DA gets to be scaled by dii from
the original matrix A. Note that the scaling factors are cancelled by the same
scaling factors introduced on the right hand side vector, leaving the solution to
the original system unchanged.

Note: The column scaling does not preserve the solution in general. �

3. Gaussian elimination

Chapter 2.2 of Numerical Recipes, and Chapter 20 of the textbook

Recall that in this chapter we are interested in solving a well-defined linear
system given as

Ax = b, (2.15)

where A is a m × m square matrix and x and b are m-vectors. The most

standard algorithm for the solution of linear systems learned in introductory
linear algebra classes is Gaussian elimination. Gaussian elimination proceeds in
steps sweeping the matrix from left to right, and successively zeroing out (using
clever linear operations on the rows), all the coefficients below the diagonal. The
same operations are carried out on the right-hand-side, to ensure invariance of
the solution. ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

→
 ∗ ∗ ∗ ∗0 ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

→
 ∗ ∗ ∗ ∗0 ∗ ∗ ∗

0 0 ∗ ∗
0 0 ∗ ∗

→
 ∗ ∗ ∗ ∗0 ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗


(2.16)

The end product is an upper triangular matrix, and the associated set of linear
equations can then be solved by back-substitution. Here is a sample algorithm
describing the steps required for Gaussian elimination.

32

Algorithm: Basic Gaussian elimination:

do j = 1 to m− 1
![loop over column]
if ajj = 0 then

stop
![stop if pivot (or divisor) is zero]

endif
do i = j + 1 to m
![sweep over rows ri below row rj]

ri = ri − rjaij/ajj
![zeros terms below ajj and transforms rest of matrix]

bi = bi − bjaij/ajj
![carries over same operation on RHS]

enddo
enddo

Note that the operation ri = ri − rjaij/ajj is another loop over all terms in
row ri. It guarantees to zero out all of the elements in the column j below the
diagonal, and since it only operates on rows below the diagonal, it does not
affect any of the terms that have already been zeroed out.

This algorithm is however problematic for a few reasons. The first is that it
stops if the diagonal term ajj is zero, which may well happen even if the matrix is
non-singular. The second problem is that even for non-singular, well-conditioned
matrices, this algorithm is not very stable. Both problems are discussed in the
next section. Finally it is also quite wasteful since it spends time calculating
entries that we already know are zero. More on this later.

It is worth noting that the operations described in the previous algorithm
can be written formally in terms of invariant transformations. Indeed, suppose
we define the matrix M1 so that its action on A is to zero out the elements
in the first column below the first row, and apply it to both the left-hand-side
and right-hand-sides of Ax = b. Again, we repeat this process in the next
step so that we find M2 such that the second column of M2M1A becomes zero
below the second row, along with applying the equivalent multiplication on the
right hand side, M2M1b. This process is continued for each successive column
until all of the subdiagonal entries of the resulting matrix have been annihilated.

If we define the final matrix M = Mn−1 · · ·M1, the transformed linear
system becomes

Mn−1 · · ·M1Ax = MAx = Mb = Mn−1 · · ·M1b. (2.17)

To show that this is indeed an invariant transformation, we simply have to show
that M is non-singular. The easiest (non-rigorous) way of showing this is to
look at the structure of M, through an example.

33

Example: Consider

Ax =

 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


 x1

x2

x3

x4

 =

 3
6
10
1

 = b. (2.18)

The first question is to find a matrix M1 that annihilates the subdiagonal
entries of the first column of A. This can be done if we consider a matrix
M1 that can subtract twice the first row from the second row, four times the
first row from the third row, and three times the first row from the fourth row.
The matrix M1 is then identical to the identity matrix I4, except for those
multiplication factors in the first column:

M1A =

 1
−2 1
−4 1
−3 1


 2 1 1 0

4 3 3 1
8 7 9 5
6 7 9 8

 =

 2 1 1 0
1 1 1
3 5 5
4 6 8

 , (2.19)

where we treat the blank entries to be zero entries.

The next step is to annihilate the third and fourth entries from the second
column (3 and 4), which gives the next matrix M2 that has the form:

M2M1A =

 1
1
−3 1
−4 1


 2 1 1 0

1 1 1
3 5 5
4 6 8

 =

 2 1 1 0
1 1 1

2 2
2 4

 , (2.20)

The last matrix M3 completes the process, resulting an upper triangular
matrix U:

M3M2M1A =

 1
1

1
−1 1


 2 1 1 0

1 1 1
2 2
2 4

 =

 2 1 1 0
1 1 1

2 2
2

 = U,

(2.21)
together with the right hand side:

M3M2M1b =

 3
0
−2
−6

 = y. (2.22)

We see that the matrix M formed in the process is the product of three
lower-triangular matrices, which is itself lower triangular (you can easily check
this out!). Since lower triangular matrices are singular if and only if one of their
diagonal entries is zero (which is not the case since they are all 1), M is non-
singular. �

34

Example: In the previous example, we see that the final transformed linear
system M3M2M1A = MA yields MAx = Mb which is equivalent to Ux = y,
an upper triangular system which we wanted and can be solved easily by back-
substitution, starting from obtaining x4 = −3, followed by x3, x2, and x1 in
reverse order to find a complete solution

x =

 0
1
2
−3

 . (2.23)

Furthermore, the full LU factorization of A can be established as A = LU
if we compute

L = (M3M2M1)−1 = M−1
1 M−1

2 M−1
3 . (2.24)

At first sight this looks like an expensive process as it involves inverting a series
of matrices. Surprisingly, however, this turns out to be a trivial task. The
inverse of Mi, i = 1, 2, 3 is just itself but with each entry below the diagonal
negated. Therefore, we have

L = M−1
1 M−1

2 M−1
3

=

 1
−2 1
−4 1
−3 1


−1  1

1
−3 1
−4 1


−1  1

1
1
−1 1


−1

=

 1
2 1
4 1
3 1


 1

1
3 1
4 1


 1

1
1
1 1



=

 1
2 1
4 3 1
3 4 1 1

 . (2.25)

Notice also that the matrix multiplication M−1
1 M−1

2 M−1
3 is also trivial and is

just the unit lower triangle matrix with the nonzero subdiagonal entries of M−1
1 ,

M−1
2 , and M−1

3 inserted in the appropriate places. (Notice that the similar is
not true for M3M2M1.)

All together, we finally have our decomposition A = LU: 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =

 1
2 1
4 3 1
3 4 1 1


 2 1 1 0

1 1 1
2 2

2

 . (2.26)

�

35

While we have proved it only for this particular example, it is easy to
see how the proof could generalize for any non-singular matrix A, and in the
process, suggest how to write down a much more compact version of the Gaussian
elimination algorithm:

Algorithm:
do j = 1 to m− 1

Mj =



1
...

1
−aj+1,j/ajj 1

−aj+2,j/ajj
...

...
...

−am,j/ajj 1


A = MjA
b = Mjb

enddo

Note, however, that creating the matrix Mj and multiplying both A and b
by it at every iteration is very wasteful both in memory and time, so this more
compact version is never used in practical implementations of the algorithm. It
is only really useful for illustration purposes, and sometimes for proving theo-
rems.

In any case, the resulting transformed linear system is MAx = Ux = Mb = y,
where M = Mm−1 . . .M1 is lower triangular and U is upper triangular. The
equivalent problem Ux = y can be solved by back-substitution to obtain the
solution to the original linear system Ax = b. This is done simply as

Algorithm: Backsubstitution of Ux = y (U is upper triangular):

xm = ym/umm ![stop if umm is zero, singular matrix]

do i = m− 1 to 1
![loop over lines, bottom to top]
if uii = 0 then

stop ![stop if entry is zero, singular matrix]
endif
sum = 0.0 ![initialize to zero first]
do k = i+ 1 to m

sum = sum + uikxk
enddo
xi = (yi−sum)/uii

enddo

36

Note:

• Some algorithms simply return the solution within the RHS vector y in-
stead of returning it as a separate vector x. To do so simply replace the
last operation with yi = (yi − sum)/uii, which gradually overwrites the
entries of y as they are no longer needed.

• It is very easy to do the same operations at the same time on many RHS
vectors y. To do so, create a matrix Y formed by all the RHS column-
vectors and perform the Gaussian elimination and backsubstitution on
the whole matrix Y at the same time (see, e.g., Numerical Recipes for an
example).

4. Gaussian elimination with pivoting

We obviously run into trouble when the choice of a divisor – called a pivot –
is zero, whereby the Gaussian elimination algorithm breaks down. The solution
to this singular pivot issue is fairly straightforward: if the pivot entry is zero at
stage k, i.e., akk = 0, then we interchange row k of both the matrix and the right
hand side vector with some subsequent row whose entry in column k is nonzero
and resume the process as usual. Recall that permutation is an invariant trans-
formation that does not alter the solution to the system.

This row interchanging is part of a process called pivoting, which is illus-
trated in the following example.

Example: Suppose that after zeroing out the subdiagonal in the first column,
the next diagonal entry is zero (red line). Then simply swap it with one of the
rows below that, e.g. here the blue one. ∗ ∗ ∗ ∗0 0 ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

 P−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 (2.27)

where the permutation matrix P is given as

P =

 1
1

1
1

 . (2.28)

�

Problems do not only occur with zero pivots, but also when the pivots are
very small, i.e. close to or below machine precision εmach. Recall that we have
εmach ≈ 10−7 for single precision, and εmach ≈ 10−16 for double precision.

37

Example: Let us consider the problem

A =

(
ε 1
1 1

)(
x
y

)
=

(
1
2

)
, (2.29)

where ε < εmach ≈ 10−16, say, ε = 10−20. The real solution of this problem is(
x
y

)
=

(1
1−ε
1−2ε
1−ε

)
'
(

1
1

)
(2.30)

However, let’s see what a numerical algorithm would give us. If we proceed with-
out any pivoting (i.e., no row interchange) then the first step of the elimination
algorithm gives

A =

(
ε 1
0 1− ε−1

)(
x
y

)
=

(
1

2− ε−1

)
, (2.31)

which is numerically equivalent to

A =

(
ε 1
0 −ε−1

)(
x
y

)
=

(
1
−ε−1

)
, (2.32)

in floating point arithmetic since 1/ε ' 1020 � 1. The solution via back-
substitution is then

y =
−ε−1

−ε−1
= 1 and x =

1− 1

ε
= 0 (2.33)

which is very, very far from being the right answer!! We see that using a small
pivot, and a correspondingly large multiplier, has caused an unrecoverable loss
of information in the transformation. Also note that the original matrix here is
far from being singular, it is in fact a very well-behaved matrix.

As it turns out, we can easily cure the problem by interchanging the two rows
first, which gives (

1 1
ε 1

)(
x
y

)
=

(
2
1

)
, (2.34)

so this time the elimination proceeds as(
1 1
0 1− ε

)(
x
y

)
=

(
2

1− 2ε

)
, (2.35)

which is numerically equal to(
1 1
0 1

)(
x
y

)
=

(
2
1

)
, (2.36)

in floating-point arithmetic, and whose solution is x = (1, 1)T . This time, we
actually get the correct answer within machine accuracy. �

38

The foregoing example is rather extreme, but large errors would also occur
even if we had εmach � ε � 1. This suggests a general principle in which we
want to make sure to always work with the largest possible pivot, in order to
produce smaller errors in floating-point arithmetic, and stabilizes an otherwise
very unstable algorithm. Gaussian elimination with partial pivoting therefore

proceeds as below. At step j, find p = maxk=j,...,m |akj | and select it as the j−th
pivot. Then switch the lines j and K (if j 6= K), where K is the value of k for
which |akj | is maximal before zeroing out the subdiagonal elements of column j. ∗ ∗ ∗ ∗

∗ ∗ ∗
akj ∗ ∗
∗ ∗ ∗

→
 ∗ ∗ ∗ ∗

akj ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

→
 ∗ ∗ ∗ ∗

akj ∗ ∗
0 ∗ ∗
0 ∗ ∗

 (2.37)

Note that it is possible to use full pivoting, i.e. by selecting a pivot from all the
entries in the lower right submatrix below the element ajj . In practice, however,
the extra counting and swapping work required is not usually worth it.

Algorithm: Gaussian elimination with Partial Pivoting:

do j = 1 to m− 1
![loop over column]
Find index K and pivot p such that p = |aKj | = maxk=j,...,m |akj |
if K 6= j then

interchange rows K and j
![interchange rows if needed]

endif
if ajj = 0 then

stop
![matrix is singular]

endif
do i = j + 1 to m
![loop over rows below row j]

ri = ri − aijrj/ajj
![transformation of remaining submatrix]
bi = bi − aijbj/ajj
![transformation of RHS vector]

enddo
enddo

Finally, note that there is a slight oddity in the algorithm in the sense that
if a whole row of the matrix is multiplied by a large number, and similarly the
corresponding entry in the RHS is multiplied by the same value, then this row is
guaranteed to contain the first pivot even though the actual problem is exactly
the same as the original one. If you are worried about this, you may consider
using the implicit pivoting algorithm, where each row of the augmented ma-
trix (i.e. matrix and RHS) is first scaled by its largest entry in absolute value
(see Numerical Recipes for detail).

39

5. Gauss-Jordan elimination for the calculation of the inverse of a
matrix.

Chapter 2.1 of Numerical Recipes

Gaussian elimination (with pivoting) works very well as long as the RHS vec-
tor(s) b is (are) known ahead of time, since the algorithm needs to operate on
the RHS at the same time as it operates on A. This is fine for applications
such as fitting linear functions to a set of points (as in the first example above),
where each new set of points gives rise to a new matrix problem that needs to
be solved from scratch. On the other hand, as discussed above, the evolution
of the solution of the PDE using the Crank-Nicholson algorithm from timesteps
t(n) to t(n+1) requires the solution of Af (n+1) = Bf (n), where the right-hand-side
vector Bf (n) changes at each timestep t(n). In this case it is better to calculate
the inverse of A, store it, and then merely perform the matrix multiplication
f (n+1) = A−1Bf (n) at each timestep to advance the solution (although, see also
the next section on LU factorization).

A very basic and direct method for obtaining and storing the inverse of
a matrix A is to use the so-called Gauss-Jordan elimination on the aug-
mented matrix formed by A and I.

Definition: Let us introduce a form called augmented matrix of the system
Ax = b which writes the m × m matrix A and the m-vector b together in a
new m× (m+ 1) matrix form: [

A
∣∣∣b] . (2.38)

The use of augmented matrix allows us to write each transformation step of the
linear system (i.e., both A and b) in a compact way. Note that we could have
done this for Gaussian elimination too.

Example: Consider the following system using Gauss-Jordan elimination with-
out pivoting:

x1 +x2 +x3 = 4
2x1 +2x2 +5x3 = 11
4x1 +6x2 +8x3 = 24

, (2.39)

which can be put in as an augmented matrix form:


1 1 1

∣∣∣ 4

2 2 5
∣∣∣ 11

4 6 8
∣∣∣ 24

 . (2.40)

40

First step is to annihilate the first column:
1 1 1

∣∣∣ 4

2 2 5
∣∣∣ 11

4 6 8
∣∣∣ 24

 M1−−→


1 1 1

∣∣∣ 4

0 0 3
∣∣∣ 3

0 2 4
∣∣∣ 8

 , where M1 =

 1
−2 1
−4 1

 .
(2.41)

Next we permute to get rid of the zero (so there is some basic pivoting involved):
1 1 1

∣∣∣ 4

0 0 3
∣∣∣ 3

0 2 4
∣∣∣ 8

 P1−−→


1 1 1

∣∣∣ 4

0 2 4
∣∣∣ 8

0 0 3
∣∣∣ 3

 , where P1 =

 1
1

1

 . (2.42)

Next row scaling by multiplying a diagonal matrix D1:
1 1 1

∣∣∣ 4

0 2 4
∣∣∣ 8

0 0 3
∣∣∣ 3

 D1−−→


1 1 1

∣∣∣ 4

0 1 2
∣∣∣ 4

0 0 1
∣∣∣ 1

 , where D1 =

 1
1/2

1/3

 .
(2.43)

Next annihilate the remaining upper diagonal entries in the third column:
1 1 1

∣∣∣ 4

0 1 2
∣∣∣ 4

0 0 1
∣∣∣ 1

 M2−−→


1 1 0

∣∣∣ 3

0 1 0
∣∣∣ 2

0 0 1
∣∣∣ 1

 , where M2 =

 1 −1
1 −2

1

 .
(2.44)

Finally, annihilate the upper diagonal entry in the second column:
1 1 0

∣∣∣ 3

0 1 0
∣∣∣ 2

0 0 1
∣∣∣ 1

 M3−−→


1 0 0

∣∣∣ 1

0 1 0
∣∣∣ 2

0 0 1
∣∣∣ 1

 , where M3 =

 1 −1
1

1

 .
(2.45)

�

In this example the right hand side is a single m-vector. What happens
if we perform the same procedure using multiple m-vectors? Then we get the
augmented matrix [

A
∣∣∣b1 t b2 t · · · t bn

]
. (2.46)

We see that the same operation can easily be performed simultaneously on in-
dividual bi, 1 ≤ i ≤ n.

41

Especially, if we choose m vectors bi = ei then the matrix formed by these
column vectors is the identity matrix I. In this case we see that Gauss-Jordan
elimination yields the inverse of A, that is, the solution of AX = I.[

A
∣∣∣e1 t e2 t · · · t en

]
=
[
A
∣∣∣I] −→ · · · −→ [

I
∣∣∣A−1

]
. (2.47)

Quick summary: The process of calculating the inverse of a matrix by Gauss-
Jordan elimination can be illustrated as in the following pictorial steps:


∗ ∗ ∗ ∗

∣∣ 1 0 0 0
∗ ∗ ∗ ∗

∣∣ 0 1 0 0
∗ ∗ ∗ ∗

∣∣ 0 0 1 0
∗ ∗ ∗ ∗

∣∣ 0 0 0 1

 −→


1 ∗ ∗ ∗

∣∣ ∗ 0 0 0
0 ∗ ∗ ∗

∣∣ ∗ 1 0 0
0 ∗ ∗ ∗

∣∣ ∗ 0 1 0
0 ∗ ∗ ∗

∣∣ ∗ 0 0 1



−→


1 0 ∗ ∗

∣∣ ∗ ∗ 0 0
0 1 ∗ ∗

∣∣ ∗ ∗ 0 0
0 0 ∗ ∗

∣∣ ∗ ∗ 1 0
0 0 ∗ ∗

∣∣ ∗ ∗ 0 1

 −→


1 0 0 ∗

∣∣ ∗ ∗ ∗ 0
0 1 0 ∗

∣∣ ∗ ∗ ∗ 0
0 0 1 ∗

∣∣ ∗ ∗ ∗ 0
0 0 0 ∗

∣∣ ∗ ∗ ∗ 1



−→


1 0 0 0

∣∣ ∗ ∗ ∗ ∗
0 1 0 0

∣∣ ∗ ∗ ∗ ∗
0 0 1 0

∣∣ ∗ ∗ ∗ ∗
0 0 0 1

∣∣ ∗ ∗ ∗ ∗
 (2.48)

where the matrix on the RHS of the last iteration is A−1. �

Note that pivoting is just as important for Gauss-Jordan elimination as it is
for Gaussian elimination. As a result, here is a basic algorithm for Gauss-Jordan
elimination with partial pivoting. This assumes that C = [A

∣∣B] where A is a
non-singular m ×m matrix, and B is m × n matrix consisting of all the RHS
vectors. If B = I, then the algorithm returns A−1 in the place of B. Otherwise,
it simply returns the solution to AX = B in that place.

42

Algorithm: Gauss-Jordan elimination with Partial Pivoting:

do j = 1 to m
![loop over column]
Find index K and pivot p such that p = |cKj | = maxk=j,...,m |ckj |
if K 6= j then

interchange rows K and j
endif
if cjj = 0 then

stop ![matrix is singular]
endif
rj = rj/cjj ![scale row j so diagonal element is 1]
do i = 1 to m

if i 6= j then
![loop over all rows except j]
ri = ri − cijrj
![transformation of remaining submatrix]

endif
enddo

enddo

6. Operation counts for basic algorithms

The two main efficiency concerns for numerical linear algebra algorithm are:

• time efficiency

• storage efficiency

While these concerns are mild for small problems, they can become very serious
when the matrices are very large. In this section, we will rapidly look at the
first one. A good way of estimating the efficiency and speed of execution of an
algorithm is to count the number of floating point operations performed by the
algorithm.

Example 1: Matrix multiplication AB, where A, B are m×m matrices
In computing C = AB, we have to compute the m2 coefficients of C, which
each involves calculating

cij =
m∑
k=1

aikbkj (2.49)

or in other words, m multiplications and m additions. The total operation
count is therefore of order 2m3, although because multiplications and divisions
are much more costly than additions and subtractions, operation counts usually
ignore the latter when they are dominated by the former. So the number of
operations in matrix multiplications is ∼ m3. �

43

Example 2: Back-substitution of Ux = y, where U is an m×m matrix
Running through the algorithm we have

xm =
ym
umm

→ 0 add/sub, 1 mult/div

xm−1 =
ym−1 − um−1,mxm

um−1,m−1
→ 1 add/sub, 2 mult/div

xm−2 =
ym−2 − um−2,m−1xm−1 − um−2,mxm

um−2,m−2
→ 2 add/sub, 3 mult/div

...

x1 =
y1 −

∑m
k=2 u1,kxk
u11

→ m− 1add/sub and m mult/div (2.50)

This gives an operation count of order m(m+1)/2 multiplications/divisions, and
m(m − 1)/2 additions and subtractions, so a gran total of ∼ m2/2 multiplica-
tion/division operations per RHS vector if m is large. If we do a backsubstitution
on n vectors simultaneously, then the operation count is m2n/2. �

Operation counts have been computed for the algorithms discussed so far for
the solution of linear systems, namely Gaussian elimination + back-substitution
and Gauss-Jordan elimination. This gives, for n right-hand-sides

• Gaussian elimination + backsubstitution: of order m3

3 + m2n
2 + m2n

2 .

• Gauss-Jordan elimination : of order m3

2 + m2n
2 .

so the latter is about 1.5 times as expensive as the former for small m, but 33%
cheaper for m = n. In the case of matrix inversion, however, if we cleverly avoid
computing entries that we know are zero anyway (which requires re-writing the
GE algorithm on purpose), the operation counts between GE and GJ are the
same, and about m3 in both cases.

Finally, suppose we now go back to the problem of advancing a PDE forward
in time, save the inverse, and apply it by matrix multiplication to each new
right-hand-side. In this case, the matrix multiplication of a single vector at each
timestep takes m2 multiplications and m2 additions.

7. LU factorization

Chapter 20 of the textbook

Another very popular way of solving linear systems, that has the advantage
of having a minimal operation count and has the flexibility to be used as in the
PDE problem, in a deferred way with multiple RHS vectors but the same matrix
A, is the LU algorithm. The idea is the following. Suppose we find a way of
decomposing the matrix A as

A = LU (2.51)

44

where L is lower triangular and U is upper triangular. In that case, the system
Ax = b is equivalent to LUx = b, which can be solved in two steps:

• Solve Ly = b

• Solve Ux = y

The second of these steps looks very familiar – in fact, it is simply the same
backsubstitution step as in the Gaussian elimination algorithm. Furthermore, we
saw that Gaussian elimination can be interpreted as a sequence of multiplications
by lower triangular matrices to transform A into U, and this can be used to
construct the LU decomposition.

7.1. Relationship between Gaussian elimination and LU factoriza-
tion

Ignoring pivoting for a moment, recall that transforming the matrix A via Gaus-
sian elimination into an upper-triangular matrix involves writing U as

U = MA = Mm−1 . . .M1A (2.52)

where

Mj =



1
. . .

1
−lj+1,j 1

−lj+2,j
. . .

...
. . .

−lm,j 1


and the coefficients lij are constructed from the elements below the diagonal of
the matrix Mj−1 . . .M1A (i.e. the matrix obtained at the previous step of the
iteration process).

It is easy to show that since all the Mj matrices are lower triangular, then
so is their product M. Furthermore, it is also relatively easy to show that the
inverse of a lower-triangular matrix is also lower triangular, so writing MA = U
is equivalent to A = M−1U which is in LU form with L = M−1! All that re-
mains to be done is to evaluate M−1. As it turns out, calculating the inverse of
M is actually fairly trivial as long as the coefficients lij of each matrix Mj are
known – and this can be done by Gaussian elimination.

Indeed, first note that if we define the vector lj = (0, 0, . . . , 0, lj+1,j , lj+2,j , . . . , lm,j)
T ,

then Mj can be written more compactly in terms of lj as Mj = I − lje
∗
j . We

can then verify that M−1
j = I + lje

∗
j simply by constucting the product

MjM
−1
j = (I− lje

∗
j)(I + lje

∗
j) = I− lje

∗
j + lje

∗
j − lje

∗
j lje

∗
j (2.53)

Now it’s easy to check that e∗j lj is zero, proving that MjM
−1
j = I. In other

words, finding the inverse of Mj merely requires negating its subdiagonal com-
ponents. �

45

Next, another remarkable property of the matrices Mj and their inverses

is that their product L = M−1 = M−1
1 M−1

2 . . .M−1
m−1 can also very easily be

calculated. Indeed,

M−1
i M−1

j = (I + lie
∗
i)(I + lje

∗
j) = I + lie

∗
i + lje

∗
j + lie

∗
i lje

∗
j (2.54)

The last term is zero as long as i ≤ j, which is always the case in the construction
of M−1. This is because e∗i lj = 0, because the product would be equal to the
i-th component of the vector lj , which is zero as long as i ≤ j. This shows that

M−1
i M−1

j = I + lie
∗
i + lje

∗
j , and so L = M−1 = I + l1e

∗
1 + l2e

∗
2 + · · ·+ lm−1e

∗
m−1,

which is the matrix

L =


1
l21 1
l31 l32 1
...

...
. . .

. . .
lm1 lm2 . . . lm,m−1 1


These considerations therefore suggest the following algorithm:

Algorithm: LU factorization by Gaussian elimination (without pivoting), ver-
sion 1:

do j = 1 to m− 1
![loop over columns]
if ajj = 0 then

stop
![stop if pivot (or divisor) is zero]

endif
do i = j + 1 to m

lij = aij/ajj
![create the non-zero coefficients of lj]

enddo
A = A− lje

∗
jA

![Overwrite A by MjA]
enddo

�
Note that the operation A = A− lje

∗
jA can either be written component-wise,

or as vector operations as written here, in which case the most efficient way
of doing this is to evaluate first e∗jA then multiply by lj . Also note that this

algorithm doesn’t discuss storage (i.e. where to put the lij coefficients, etc...),
and as such is merely illustrative. At the end of this algorithm, the matrix A
becomes the matrix U and the matrix L can be formed separately if needed by
the combination of all the lj vectors, as discussed above.

A common way of storing the entries lij is to actually put them in the matrix A,
gradually replacing the zeroes that would normally occur by Gaussian elimina-
tion. This is very efficient storage-wise, but then prohibits the use of the compact

46

form of the algorithm, requiring instead that the operation A = A − lje
∗
jA be

written out component-wise. The end product, after completion, are the matrix
L and U stored into the matrix A as

u11 u12 u13 . . . u1,m−1 u1m

l21 u22 u23 . . . u2,m−1 u2m

l31 l32 u33 . . . u3,m−1 u3m
... . . .

. . .
.

lm1 lm2 . . . lm,m−1 umm

 (2.55)

Algorithm: LU factorization by Gaussian elimination (without pivoting), ver-
sion 2:

do j = 1 to m− 1
![loop over columns]
if ajj = 0 then

stop
![stop if pivot (or divisor) is zero]

endif
do i = j + 1 to m

aij = aij/ajj
![create the lij and stores them in aij]
do k = j + 1 to m

aik = aik − aijajk
enddo

![Updates A]
enddo

enddo

�
This algorithm can now directly be implemented in Fortran as is. Also note
that because the operations are exactly the same as for Gaussian elimination,
the operation count is also exactly the same.

7.2. Pivoting for the LU algorithm

Chapter 21 of the textbook

Since LU decomposition and Gaussian elimination are essentially identical –
merely different interpretations of the same matrix operations – pivoting is just
as important here. However, how do we do it in practice, and how does it affect
the LU decomposition? The key is to remember that in the Gaussian elimination
algorithm, pivoting swaps rows of the RHS at the same time as it swaps rows of
the matrix A. In terms of matrix operations, the pivoted Gaussian elimination
algorithm can be thought of as a series of operations

Mm−1Pm−1 . . .M2P2M1P1Ax ≡ Ux = Mm−1Pm−1 . . .M2P2M1P1b ≡ y
(2.56)

where the Mj matrices are defined as earlier, and where the Pj matrices are
permutations matrices. We already saw an example of permutation matrix ear-

47

lier, but it is worth looking at them in a little more detail now. The matrix Pj

swaps row j with a row k ≥ j. If k = j, then Pj is simply the identity matrix,
but if k > j then Pj is the identity matrix where the row k and j have been
swapped. For instance, a matrix permuting rows 3 and 5 is

P =


1

1
0 1

1
1 0

 (2.57)

By definition, applying PjPjA = A which shows that P−1
j = Pj . Also, it’s

easy to verify that the product APj permutes the columns of A rather than its
rows.

Let’s now go back to the product Mm−1Pm−1 . . .M2P2M1P1. By contrast
with the unpivoted algorithm, where we were able to show that Mm−1 . . .M1

is a unit lower triangular matrix, it is not clear at all that the same property
applies here – in fact, it doesn’t! However, what we can show is that

Mm−1Pm−1 . . .M2P2M1P1 = M′P (2.58)

where M′ is also a unit lower triangular matrix (different from the unpivoted M)
and where P = Pm−1 . . .P2P1 is the product of all the permutation matrices
applied by pivoting, which is itself a permutation matrix.

Proof: To show this, consider for simplicity a case where m = 4. Let’s
rewrite it as follows

M3P3M2P2M1P1 (2.59)

= M3P3M2(P−1
3 P3)P2M1(P−1

2 P−1
3 P3P2)P1 (2.60)

= (M3)(P3M2P
−1
3)(P3P2M1P

−1
2 P−1

3)(P3P2P1) (2.61)

≡ (M
′
3)(M

′
2)(M

′
1)P3P2P1, (2.62)

whereby we can define the M
′
i matrices as

M
′
3 = M3 (2.63)

M
′
2 = P3M2P

−1
3 (2.64)

M
′
1 = P3P2M1P

−1
2 P−1

3 (2.65)

These matrices look complicated, but in fact they are just equal to Mi with
the subdiagonal entries permuted by the pivoting (as opposed to the whole rows
permuted). To see why, note that in each expression the permutation matrices
operating on Mj always have an index greater than j. Let’s look at an example

– suppose we consider the product P2M1P
−1
2 , and say, for the sake of example,

that P2 swaps rows 2 and 4. Then

P2

 1
−l21 1
−l31 1
−l41 1

P−1
2 =

 1
−l41 0 1
−l31 1
−l21 1 0

P2 =

 1
−l41 1
−l31 1
−l21 1

 (2.66)

48

This easily generalizes, so we can see that the matrices M′
j have exactly the

same properties as the matrices Mj , implying for instance that their product
M′ = M′

3M
′
2M
′
1 is also unit lower triangular. We have therefore shown, as

required, that M3P3M2P2M1P1 = M′P where M′ is unit lower triangular,
and where P = P3P2P1 is a permutation matrix. �

Having shown that the pivoted Gaussian elimination algorithm equivalent
to transforming the problem Ax = b into

M′PAx = M′Pb ≡ y (2.67)

where M′PA is an upper triangular matrix U, we therefore have

PA = LU (2.68)

where this time, L = (M′)−1.

What does this all mean in practice? Well, a few things.

• The first is that we can now create the LU decomposition just as before,
but we need make sure to swap the lower diagonal entries of the matrix L
as we progressively construct it. If these are stored in A, as in version 2
of the LU algorithm, this is done trivially!

• Second, solving the problem Ax = b is still equivalent to solving Ux = y
but now y = L−1Pb. So we need to record the permutation matrix P
to compute y. Note that it is not necessary to save the entire matrix P
to record the permutation – this would be quite wasteful. We can simply
record the integer permutation vector s.

These two considerations give us the revised pivoted LU algorithm, together
with a corresponding backsubstitution algorithm.

Algorithm: LU factorization by Gaussian elimination (with partial pivoting):

![Initialize permutation vector]
do j = 1 to m

sj = j
enddo

do j = 1 to m
![loop over columns]
Find index K and pivot p such that p = |aKj | = maxk=j,...,m |akj |
if K 6= j then

interchange rows K and j of A
interchange K and j entries of s, [s]j = sj
![interchange rows and record permutation]

endif
if ajj = 0 then

stop
![stop if pivot (or divisor) is zero]

49

endif
do i = j + 1 to m

aij = aij/ajj
![create the lij and stores them in aij]
do k = j + 1 to m

aik = aik − aijajk
enddo

![Updates A]
enddo

enddo

Note: this time the loop goes from j = 1 to j = m. This is because we just need
to record the last swapping index.

LU backsubstitution in general (i.e. with or without pivoting) is a little trick-
ier than Gaussian elimination backsubstitution since we first have to create the
vector y = L−1Pb. This is called a forward substitution. The texbook is re-
markably silent on the topic, but the algorithm can be worked out reasonably
easily if we remember that

• The vector Pb is just a permutation of the entries of the vector b, and
the vector s was constructed so that (Pb)i = bsi .

• Although the matrix L−1 is fairly tricky to compute directly, this computa-
tion is not actually needed. Indeed, recall that L−1 = M = Mm−1 . . .M1,
and Mj = I− lje

∗
j .

This implies that we can create y = L−1Pb by first letting y = Pb, and then
successively applying the aglorithm y = Mjy where

Mjy = y − lje
∗
jy = y − yjlj (2.69)

which is now easy to express in component form since we know that lj =
(0, 0, . . . , 0, lj+1,j , lj+2,j , . . . , lmj)

T . We therefore get

Algorithm: LU backsubstitution:

![Initialize y with Pb]
do j = 1 to m

yi = bsi
enddo

![Forward substitution, y = L−1Pb]
do j = 1 to m− 1
![Do y = Mjy]

do i = j + 1 to m
yi = yi − yjaij

enddo
enddo

50

![Backward substitution, Ux = y]
do i = m to 1

![loop over lines, bottom to top]
if uii = 0 then

stop
![stop if entry is zero, singular matrix]

endif
sum = 0.
do k = i+ 1 to m

sum = sum + uikxk
enddo
xi = (yi−sum)/aii

enddo

8. Cholesky factorization for Hermitian positive definite systems

Chapter 23 of the textbook

Thus far we have assumed that the linear system has a general square non-
singular matrix A, that is otherwise unremarkable, and have learned algorithms
for the solution of Ax = b that work for any such matrix. However, in some
cases we know that the matrix A has special properties that allow us to use more
specialized algorithms, that are often faster, but restricted only to matrices that
share these properties.

A well-known example of such algorithms is the Cholesky decomposition,
that is only applicable to positive definite Hermitian matrices. Such ma-
trices satisfy the property that

x∗Ax > 0 (2.70)

for any nonzero vector x.
The fact that x∗Ax is real simply comes from the fact that the matrix is

Hermitian. Indeed, the complex conjugate of x∗Ax is x∗A∗x = x∗Ax since
A∗ = A. If a number is equal to its complex conjuate, this simply shows it
is real. The property x∗Ax > 0 on the other hand is the defining property
of positive definite matrices. It means that the action of a Hermitian posi-
tive definite matrix on a vector always return a vector whose projection on the
original one is positive. Proving that a matrix is positive definite is not always
easy, but they often arise in many linear algebra problems that derive from the
solution of a PDE, for instance, and as such, are very common.

Note that if you have a negative definite matrix, i.e. a matrix with the
property that

x∗Ax < 0 (2.71)

51

for any x, then it is very easy to create the positive definite matrix B = −A.
Non positive definite or negative definite matrices are matrices for which x∗Ax
is sometimes positive, and sometimes negative, depending on the input vector x.

If the matrix A is symmetric and positive definite (SPD), then an LU decom-
position of A indicates that A = LU. This then implies that

A∗ = (LU)∗ = U∗L∗ = A = LU (2.72)

so we have just shown that the LU decomposition of a Hermitian matrix satisfies

U∗L∗ = LU (2.73)

Since the transpose of an upper-triangular matrix is a lower triangular one,
and vice versa, this also shows that one should in principle be able to find a
decomposition such that L = U∗, or U = L∗ so that

A = LU = U∗U = LL∗ (2.74)

for any Hermitian matrix A. In practice, this factorization only exists for posi-
tive definite matrices. To see why, note that

x∗Ax = x∗U∗Ux = (Ux)∗(Ux) > 0 (2.75)

so the existence of a decomposition A = U∗U (or equivalently LL∗) does indeed
depend on the positive definiteness of A.

This decomposition is known as the Cholesky factorization of A:

Definition: A Cholesky factorization of a Hermitian positive definite matrix
A is given by A = U∗U = LL∗, where U is upper-triangular and L is lower
triangular such that ujj = ljj > 0.

To prove that it exists for any positive definite Hermitian matrix, we simply
need to come up with an algorithm to systematically create it. Let us consider
the decomposition A = LL∗, and write it out in component form:

aij =
m∑
k=1

(L)ik(L)∗kj =
m∑
k=1

likl
∗
jk =

min(i,j)∑
k=1

likl
∗
jk (2.76)

using successively, the definition of the Hermitian transpose, and the fact that
L is lower triangular so its coefficients are zero if the column number is larger
than the row number. Writing these out for increasing values of i we have

• i = 1:
a11 = l11l

∗
11 (2.77)

• i = 2:

a21 = l21l
∗
11

a22 = l21l
∗
21 + l22l

∗
22 (2.78)

52

• i = 3:

a31 = l31l
∗
11

a32 = l31l
∗
21 + l32l

∗
22

a33 = l31l
∗
31 + l32l

∗
32 + l33l

∗
33 (2.79)

and so forth. Note that because the matrix is Hermitian, a11 = a∗11 and so a11

must be real, implying that the equation a11 = l11l
∗
11 = ||l11||2 indeed makes

sense.
Let’s now choose l11 =

√
a11. We can then move to the next equation, and

write successively

l21 =
a21

l11

l22 = l∗22 =
√
a22 − l21l∗21 (2.80)

then

l31 =
a31

l11

l32 =
a32 − l31l

∗
21

l22

l33 = l∗33 =
√
a33 − l31l∗31 − l32l∗32 (2.81)

etc...
This can always be done, which provides us with a straightforward algo-

rithm to construct the Cholesky factorization. Note that many version of this
algorithm exist, which merely reorder some of these operations in different ways
(cf textbook, Numerical Recipes, etc). They appear to be roughly equivalent in
terms of time and stability. The one presented below is reasonably simple to un-
derstand, and merely corresponds to working column by column, first calculating
the diagonal element in each column, that is, calculating

ljj =

√√√√ajj −
j−1∑
k=1

ljkl
∗
jk (2.82)

then working on the column below that element, in which

lij =
aij −

∑j−1
k=1 likl

∗
jk

ljj
(2.83)

The elements of L are simply stored by over-writing the lower triangular ele-
ments of A.

Algorithm: Cholesky factorization (decomposition):

![loop over columns]

53

do j = 1 to m
![Calculate new diagonal element]
do k = 1 to j − 1

ajj = ajj − ajka∗jk
enddo
ajj =

√
ajj

![Calculate elements below diagonal]
do i = j + 1 to m

do k = 1 to j − 1
aij = aij − aika∗jk

enddo
aij = aij/ajj

enddo
enddo

Note: There is a number of facts about the CF algorithm that make it very
attractive and popular for symmetric positive definite matrices:

• No pivoting is required for numerical stability.

• Only about n3/6 multiplications and a similar number of additions are
required, which makes it about twice as fast as the standard Gaussian
elimination.

• The construction requires calculating the square roots of m numbers. If
the matrix A is Hermitian positive definite, these numbers are all positive
so the square root is well-defined. On the other hand, if one of these is
not positive, then this means the original matrix was not positive definite
– this is often used as a test to determine the positive-definiteness of a
matrix.

As in the case of LU decomposition, the Cholesky decomposition stores a
partially inverted matrix A (so to speak), so solutions to the problem Ax = b
can be obtained quickly for different RHS b as they become known. To do so,
we need to solve the problem LL∗x = b, which can be decomposed into two
steps:

• a forward substitution step of the form Ly = b, which gives the vector y

• a backsubstitution step of the form L∗x = y, which gives the vector x.

Algorithm: Cholesky backsubstitution :

![Forward substitution, solving Ly = b
do i = 1 to m

sum = bi
do j = 1 to i− 1

sum = sum -yjlij

54

enddo
yi = sum/lii

enddo

![Backward substitution, solving L∗x = y
do i = m to 1

if l∗ii = 0 then
stop

endif
do k = i+ 1 to m

yi = yi − l∗kixk
enddo
xi = yi/l

∗
ii

enddo

Note that this algorithm preserves b and returns a separate solution x. It
is also possible to write it in such a way as to overwrite b with the solution on
exit.

9. Some notions of stability for numerical linear algebra

Chapters 14 and 15 from the textbook

In this section, we now introduce the subtle but very important concepts of
accuracy and stability in numerical linear algebra, where any algorithm put
forward needs to be examined in the light of the potential errors arising from
floating point arithmetic.

Let’s first introduce some notations. An algorithm in linear algebra usually
takes a quantity such as scalar, vector or a matrix, denoted X, and applies to it
a series of functions or transformations to arrive at another quantity, scalar, vec-
tor, or matrix, denoted Y . In theory, this algorithm is exact, but its numerical
implementation is not because of rounding errors and floating point arithmetic.
Let’s call f the exact theoretical algorithm (so Y = f(X)), and f̃ the approx-

imate one. Let’s also call X̃ the numerically-approximated input value (which

may contain roundoff errors), and Ỹ is the numerically-approximated value of
the exact solution (assuming the latter is somehow known).

Definition: A round-off error is defined by the difference between an exact and
an approximated solutions.

55

We know that the relative roundoff errors are smaller or equal to machine
accuracy, so by definition

||X̃ −X||
||X||

< εmach, (2.84)

||Ỹ − Y ||
||Y ||

< εmach (2.85)

However, except for the most trivial algorithms, there is no guarantee that

f̃(X̃) = Ỹ (2.86)

which means that, even though (2.85) is true, there is no guarantee that

||f̃(X̃)− f(X)||
||f(X)||

< εmach (2.87)

should be. In fact, this is very rarely true! So the question is, can we neverthe-
less estimate under which circumstances the numerical solution f̃(X̃) is indeed
close to f(X)?

Definition: A numerical algorithm f̃ for a problem f is called accurate if, for
each possible input value X, we have

||f̃(X)− f(X)||
||f(X)||

= O(εmach) (2.88)

for small enough εmach.

The symbol O is a notation that means of order of, and has a very strict
mathematical definition which is explored in detail in AMS212B and AMS213B.
For the purpose of this class, it is sufficient to interpret this to mean that there
exists a positive constant C such that

||f̃(X)− f(X)||
||f(X)||

< Cεmach (2.89)

for small enough εmach and for all X. Note that if ||f(X)|| → 0, this can and

should be re-interpreted as ||f̃(X) − f(X)|| < Cεmach||f(X)||. In words, this

implies that f̃(X) − f(X) decays to zero at least as fast as f(X) does. Note
that nothing in this definition requires C to be of order unity; as we shall see,
sometimes C can be very large, so the concept of accuracy takes a different
meaning in the strict mathematical sense and in the everyday-life sense.

Accuracy is usually quite difficult to prove directly (though see later for an
important theorem on the topic). In fact, algorithms applied to input matrices

56

X that are ill-conditioned cannot be accurate. For this reason, another more
practical concept is that of stability.

Definition: An algorithm f̃ for a problem f is stable if for each possible input
X,

||f̃(X)− f(X̃)||
||f(X̃)||

= O(εmach) (2.90)

for some X̃ with
||X̃ −X||
||X||

= O(εmach) (2.91)

As described in the book, such a stable numerical algorithm gives nearly the
right answer for nearly the right input.

Example: The unpivoted algorithm for Gaussian elimination is a clear example
of an unstable algorithm. In the case of the input matrix

X =

(
0 1
1 1

)
(2.92)

there is no nearby value X′ that would let the algorithm return nearly the right
answer. Indeed, as long as the 0 is there in the diagonal, the algorithm fails
because of division by zero, and even if we try to consider instead the matrix

X′ =

(
ε 1
1 1

)
(2.93)

with ε = O(εmach), to avoid the problem, we saw that the answer will still be
O(1) away from the true answer.

Directly proving the stability of an algorithm can be quite difficult but there
is another concept that is both stronger (i.e. that implies stability), and often
simpler to prove, that of backward stability.

Definition: An algorithm f̃ for a problem f is backward stable if, for each
possible input X,

f̃(X) = f(X̃) for some X̃ with
||X̃ −X||
||X||

= O(εmach). (2.94)

To paraphrase the textbook again, a backward stable numerical algorithm
gives exactly the right answer for nearly the right input. Note that backward
stability trivially implies stability, but the converse is not true (stable algorithms
are not all backward stable). Also note that, because all norms are equivalent

57

within a factor unity, the definitions of stable and backward stable hold regard-
less of the norm used – hence we can prove stability or backward stability using
whichever one is the easiest to use for any given algorithm.

Backward stability is often easier to demonstrate than stability because it is
relatively easy to show using some of the fundamental properties of floating
point arithmetic that any of the four basic operations +, −, × and ÷ are all
backward stable – namely, given any input vector (x, y)T , the numerical algo-
rithms that compute respectively x+ y, x− y, xy and x/y are backward stable
(as long as the quantity is defined). For details, examples, and more, see the
textbook. In particular, read the section on the proof of backward stability
for the backsubstitution algorithm (Chapter 17), which should illustrate exactly
how tricky and detailed stability analysis needs to be in order to be rigorous.

Because stability/instability proofs are so cumbersome, we will never attempt
to prove stability in this course, but will merely use well-known results from the
literature, namely:

• The backsubstitution algorithm for Gaussian elimination is backward sta-
ble.

• Gaussian elimination or LU factorization without pivoting is neither back-
ward stable nor stable.

• Gaussian elimination or LU factorization with partial pivoting is theo-
retically backward stable, but can be prone to extremely large errors for
large, poorly conditioned matrices (see Chapter 22 of the textbook and
examples).

• Cholesky factorization and backsubstitution are backward stable.

So what can be said about accuracy, which was the original question posed in
this section? As it turns out, the accuracy of an algorithm can be estimated as
long as the algorithm has already been shown to be backward stable, with the
following theorem:

Theorem: Suppose a backward stable algorithm f̃ is applied to solve a problem
f(X) = Y with a relative condition number κ(X) that is known. Then the
relative errors satisfy

||f̃(X)− f(X)||
||f(X)||

= O(κ(X)εmach) (2.95)

To prove the theorem, notice that since f̃ is backward stable, f̃(X) = f(X̃)

for some X̃ such that
||δX||
||X||

= O(εmach), (2.96)

58

where δX = X̃ −X. If we let δf = f(δX), the relative errors can be written as

||f̃(X)− f(X)||
||f(X)||

=
||f(X̃)− f(X)||
||f(X)||

=
||δf ||
||f(X)||

(2.97)

as long as Eq.(2.96) is true. Using the definition of κ(X), we get

||δf ||
||f(X)||

||X||
||δX||

≤ κ(X), (2.98)

which yields, together with Eq. (2.96),

||δf ||
||f(X)||

≤ κ(X)
||δX||
||X||

≤ Cκ(X)εmach, (2.99)

for some C > 0. This prove the theorem. �

Hence, as long as κ(X) is bounded for all X, the theorem guarantees accu-
racy of the algorithm, and provides upper bounds on the relative error. If κ(X)
is not globally bounded, the theorem can nevertheless be used to estimate the
accuracy of the algorithm for a particular input X. This shows once again that,
regardless of the quality of an algorithm, little can be done to get an accurate
answer if the original problem itself is ill-conditioned.

Finally, we saw that for both matrix multiplication f(x) = Ax and for
the solution of the problem Ax = b (i.e. f(b) = A−1b, given b), the relative
condition number of the problem was bounded by the condition number of the
matrix A. This then implies that the accuracy of a backward stable algorithm
can be estimated with

||f̃(X̃)− f(X)||
||f(X)||

≤ O(κ(A)εmach) (2.100)

This bound therefore applies to any matrix multiplication Ax = b to given an
estimate of the error on b, and to applications of LU factorization and Gaussian
elimination for the solution of linear systems, as well as to the use of the Cholesky
factorization for the same purpose, to give an estimate of the error on the solution
x.

Chapter 3

Solutions of overdetermined
linear problems (Least Square
problems)

1. Over-constrained problems

See Chapter 11 from the textbook

1.1. Definition

In the previous chapter, we focused on solving well-defined linear problems de-
fined by m linear equations for m unknowns, put into a compact matrix-vector
form Ax = b with A an m ×m square matrix, and b and x m−long column
vectors. We focussed on using direct methods to seek exact solutions to such
well-defined linear systems, which exist whenever A is nonsingular. We will re-
visit these problems later this quarter when we learn about iterative methods.

In this chapter, we look at a more general class of problems defined by so-
called overdetermined systems – systems with a larger numbers of equations
(m) than unknowns (n): this time, we have Ax = b with A an m × n matrix
with m > n, x an n-long column vector and b an m−long column vector. This
time there generally are no exact solutions to the problem. Rather we now want
to find approximate solutions to overdetermined linear systems which minimize
the residual error

E = ||r|| = ||b−Ax|| (3.1)

using some norm. The vector r = b−Ax is called the residual vector.

Any choice of norm would generally work, although, in practice, we prefer
to use the Euclidean norm (i.e., the 2-norm) which is more convenient for nu-
merical purposes, as they provide well-established relationships with the inner
product and orthogonality, as well as its smoothness and convexity (we shall
see later). For this reason, the numerical solution of overdetermined systems is
usually called the Least Square solution, since it minimizes the sum of the
square of the coefficients of the residual vector, ri = (b−Ax)i for i = 1 . . .m.

59

60

Remark: You will sometimes find references to least squares problems as

Ax ∼= b (3.2)

in order to explicitly reflect the fact that x is not the exact solution to the
overdetermined system, but rather is an approximate solution that minimizes
the Euclidean norm of the residual. �

1.2. Overdetermined System

The question that naturally arises is then “what makes us to consider an overde-
termined system?” Let us consider some possible situations.

Example: Suppose we want to know monthly temperature distribution in Santa
Cruz. We probably would not make one single measurement for each month and
consider it done. Instead, we would need to take temperature readings over many
years and average them. From this procedure, what we are going to make is a
table of ‘typical’ temperatures from January to December, based on vast obser-
vational data, which often times even include unusual temperature readings that
deviate from the ‘usual’ temperature distributions. This example illustrates a
typical overdetermined system: we need to determine one representative mean-
ingful temperature for each month (i.e., one unknown temperature for each
month) based on many numbers (thus overdetermined) of collected sample data
including sample noises (due to measurement failures/errors, or unusually cold
or hot days – data deviations, etc.). �

Example: Early development of the method of least squares was due largely to
Gauss, who used it for solving problems in astronomy, particularly determining
the orbits of celestial bodies such as asteroids and comets. The least squares
method was used to smooth out any observational errors and to obtain more
accurate values for the orbital parameters. �

Example: A land surveyor is to determine the heights of three hills above some
reference point. Sighting from the reference point, the surveyor measures their
respective heights to be

h1 = 1237ft., h2 = 1942ft., and h3 = 2417ft. (3.3)

And the surveyor makes another set of relative measurements of heights

h2 − h1 = 711ft., h3 − h1 = 1177ft., and h3 − h2 = 475ft. (3.4)

The surveyor’s observation can be written as

Ax =


1 0 0
0 1 0
0 0 1
−1 1 0
−1 0 1

0 −1 1


 h1

h2

h3

 ∼=


1237
1941
2417
711

1177
475

 = b. (3.5)

61

It turns out that the approximate solution becomes (we will learn how to solve
this soon)

xT = [h1, h2, h3] = [1236, 1943, 2416], (3.6)

which differ slightly from the three initial height measurements, representing a
compromise that best reconciles the inconsistencies resulting from measurement
errors. �

Figure 1. A math-genius land surveyor obtains three hills’ height by com-
puting the least squares solution to the overdetermined linear system.

1.3. Examples of applications of overdetermined systems

One of the most common standard applications that give rise to an overde-
termined system is that of data fitting, or curve fitting. The problem can be
illustrated quite simply for any function from R to R as

• Given m data points (xi, yi), i = 1, . . . ,m

• Given a function y = f(x; a) where a = (a1, · · · , an)T is a vector of n
unknown parameters

• The goal is to find for which vector a the function f best fits the data in
the least square sense, i.e. that minimizes

E2 =
m∑
i=1

(
yi − f(xi,a)

)2
. (3.7)

The problem can be quite difficult to solve when f is a nonlinear function of the
unknown parameters. However, if f uses a linear combination of the coefficients
ai this problem simply reduces to an overdetermined linear problem. These are
called linear data fitting problems.

62

Definition: A data fitting problem is linear if f is linear in a = [a1, · · · , an]T ,
although f could be nonlinear in x.

Note that the example above can also easily be generalized to multivariate func-
tions. Let’s see a few examples of linear fitting problems.

1.3.1. Linear Regression Fitting a linear function through a set of points is
a prime example of linear regression.

In the single-variable case, this requires finding the coefficients a and b of the lin-
ear function f(x) = ax+b that best fits a set of data points (xi, yi), i = 1, . . . ,m.
This requires solving the overdetermined system

x1 1
x2 1
...
xm 1

(ab
)

=


y1

y2
...
ym

 (3.8)

For multivariate problems, we may for instance want to fit the linear func-
tion y = f(x) = a0 + a1x1 + · · · + an−1xn−1 through the m data points with

coordinates (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n−1, y

(i)) for i = 1, . . . ,m. In that case, we need to
solve the overdetermined system

1 x
(1)
1 x

(1)
2 . . . x

(1)
n−1

1 x
(2)
1 x

(2)
2 . . . x

(2)
n−1

...

1 x
(m)
1 x

(m)
2 . . . x

(m)
n−1




a0

a1
...

an−1

 =


y(1)

y(2)

...
y(m)

 (3.9)

for the n parameters a0, . . . , an−1.

1.3.2. Polynomial fitting Polynomial fitting, in which we try to fit a polyno-
mial function

f(x; a) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 (3.10)

to a set of m points (xi, yi) is a also a linear data fitting problem (since f
depends linearly on the coefficients of a). Finding the best fit involves solving
the overconstrained problem

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...
1 xm x2

m . . . xn−1
m




a0

a1
...

an−1

 =


y1

y2
...
ym

 (3.11)

for the n parameters a0, . . . , an−1. The matrix formed in the process is of a
particularly well-known type called a Vandermonde matrix.

63

Example: Consider five given data points, (ti, yi), 1 ≤ i ≤ 5, and a data fitting
using a quadratic polynomial. This overdetermined system can be written as,
using a Vandermonde matrix,

Ax =


1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24
1 t5 t25


 x1

x2

x3

 ∼=

y1

y2

y3

y4

y5

 = b. (3.12)

The problem is to find the best possible values of x = [x1, x2, x3]T which mini-
mizes the residual r in l2-sense:

||r||22 = ||b−Ax||22 =

5∑
i=1

(
yi − (x1 + x2ti + x3t

2
i)
)2

(3.13)

Such an approximating quadratic polynomial is plotted as a smooth curve in
blue in Fig. 2, together with m given data points denoted as red dots. �

Figure 2. The result of fitting a set of data points (ti, yi) with a quadratic
function, f(x,a) = a0 + a1x+ a2x

2. Image source: Wikipedia

Remark: In statistics, the method of least squares is also known as regression
analysis. �

1.3.3. A nonlinear fitting problem: Fitting a function of the kind

f(t,a) = a1e
a2t + a2e

a3t + · · ·+ an−1e
ant (3.14)

is not a linear data fitting problem. This must be treated using nonlinear least
square methods, beyond the scope of this course.

64

Note that in all the examples above, we were able to frame the problem in
the form Ax = b, where x is the vector of real parameters (called a above) of
size n, A is a real matrix, of size m× n and b is a real vector of size m.

2. Solution of Least Squares Problems using the Cholesky decompo-
sition

As discussed earlier, a Least Squares problem can be viewed as a minimization
problem on the norm of the residual r = b −Ax over all possible values of x.
This is essentially a problem in multivariate calculus! To solve it, first note that
minimizing the norm or its square is the same thing. Then we write the square
of the Euclidean norm of r as an inner product:

E2 = ||r||2 = rT r = (b−Ax)T (b−Ax) (3.15)

Expanding this, we get

E2 = bTb− (Ax)Tb− bT (Ax) + (Ax)T (Ax) (3.16)

= bTb− xTATb− bTAx + xTATAx (3.17)

Minimizing the residual implies we need to find the solution x that satisfies

∂E2

∂xi
= 0, for i = 1, . . . , n. (3.18)

Writing E2 in component form, we have

E2 =
∑
i

b2i −
∑
i,j

xiajibj −
∑
i,j

biaijxj +
∑
ijk

xiajiajkxk (3.19)

=
∑
i

b2i − 2
∑
i,j

xiajibj +
∑
ijk

xiajiajkxk (3.20)

It is fairly easy to verify that

∂E2

∂xi
= −2

∑
j

ajibj + 2
∑
jk

ajiajkxk = 2(ATAx)i − 2(ATb)i (3.21)

so setting this to zero for all i requires

ATAx = ATb. (3.22)

These new equations are usually referred to as the normal equations associated
with the overdetermined problem Ax = b. The reason for this nomenclature
will be clarified shortly.

This time, since A is an m × n matrix, ATA is a square n × n matrix which
is usually much smaller than the original matrix A. Similarly, ATb is now a

65

n−long vector, much smaller than the original b. In addition, it is easy to show
that as long as A is full rank (i.e. rank n), ATA is positive definite. Indeed, let

Ã = ATA, and let’s compute

yT Ãy = yTATAy = (Ay)T (Ay) = ||Ay||2 (3.23)

which is always greater than zero for any input vector y (unless y = 0) since A
is assumed to be full rank.

Positive definiteness is good news because it means that we can use the Cholesky
decomposition to solve the problem. Since we saw that the Cholesky decompo-
sition is stable, we therefore know that we can stably find solutions to Least
Square problems using the following steps. Given the overconstrained problem
Ax = b,

• Form the normal equation Ãx = b̃ where Ã = ATA and b̃ = ATb.

• Solve the normal equation using the Cholesky decompositon and backsub-
stitution, for the unknown vector x.

and voila! Examples of application of this method for data fitting will be ex-
plored in Homework 3.

Among all the methods for the solution on unconstrained linear systems (see
later for other ones) this is definitely the fastest. However, it is also the least
accurate of all methods (even though it is stable). That’s because

cond(ATA) = cond(A)2, (3.24)

so if A is relatively poorly conditioned (large cond(A)) then Ã = ATA is very
poorly conditioned, and from a numerical point of view can even be singular
even if the original problem is not.

Example: Consider

A =

 1 1
ε 0
0 ε

 , (3.25)

where 0 < ε <
√
εmach. Forming Ã we get

Ã = ATA =

[
1 + ε2 1

1 1 + ε2

]
=

[
1 1
1 1

]
, (3.26)

in floating point arightmetic, which is a singular matrix. �

Even though this example is rather extreme, poor conditioning is unfortunately
very common in data sets that involve points with vastly varying values of x, es-
pecially for polynomial fitting and their associated Vandermonde matrices. For
this reason, other methods were later developed that do not involve forming
the normal equations in the first place, but instead, working directly with the
original matrix A.

66

3. Towards better algorithms for Least Square problems

3.1. A geometric interpretation of the Least Square Problem

To see how one may go about constructing such methods, let’s look back at the
normal equations and re-write them as

AT (b−Ax) = 0⇔ AT r = 0 (3.27)

which is also equivalent to saying that

aTi r = 0 for all i = 1, . . . , n, (3.28)

where ai are column vectors of A (or aTi are row vectors of AT). In other words,
the normal equations simply state that the solution that minimizes the error E
is the one for which the residual r is orthogonal to the column vectors of A.

While this may seem to be just an odd coincidence at first, of course it isn’t.
This result actually has a very simple geometric interpretation. Consider indeed
that, in solving the original problem Ax ∼= b, the vector b has dimension m,
while the range of the matrix A only has dimension n < m. The vector y = Ax,
by definition, is a linear combination of the column vectors of A, and therefore
lies in the span of A. But in general b does not lie in span(A) because its
dimension is m and is larger than the dimension of span(A). We therefore have
the situation illustrated in the figure below. In this figure, we see that the vector

Figure 3. Geometric interpretation of linear squares problem.

r joins the tip of b to the tip of y, and so it is shortest when r is perpendicu-
lar to the plane spanned by A. This picture can be expanded to more than 3
dimensions, and shows that to find the vector x for which ||r|| = ||b −Ax|| is
minimal, we simply have to ensure that r is orthogonal to the span of A, which
requires that it must be orthogonal to every single column vector of A.

More importantly, this diagram also illustrates that finding the vector Ax for
which r = b −Ax is orthogonal to the span of A is equivalent to finding the

67

orthogonal projection of b onto the span of A. If that projection operator,
PA, is known, then we just have to solve

Ax = PAb (3.29)

to find x. Note that this time, Ax and PAb are both vectors of length equal
to the rank of A (n, if A is full rank) so this equation forms an exact linear
system. This idea leads to a new method of solution of Least Square problems,
namely that of orthogonal projection. To construct it we first need to make a
little detour to learn about orthogonal projectors.

3.2. Orthogonal Projectors

See Chapter 6 of the textbook

Definition: A square matrix P (of size m×m) is said to be a projector if it
is idempotent, that is,

P2 = P. (3.30)

Definition: If a projector P is also symmetric, PT = P, then it is called an
orthogonal projector. Note that an orthogonal projector is not necessarily
an orthogonal matrix (this can be confusing!)

Orthogonal projectors behave exactly as you would imagine from their
names: they project vectors onto some subspace, orthogonally to that subspace.
And the subspace in question is simply the space spanned by the column vectors
of P. To see all of this, first note that because P2 = P, then

Ppi = pi for i = 1, . . . , k (3.31)

where pi are the column vectors of P, and rank(P) = k ≤ m. Hence, any vector
x that lies in the subspace spanned by the columns of P, which can be written as
x =

∑
i αipi, is invariant by application of P since Px =

∑
i αiPpi =

∑
i αipi =

x. Meanwhile, suppose instead that we have a vector x that is orthogonal to
the span of P, then by definition we have xTpi = pTi x = 0 for all i. If we now
calculate Px we find that

(Px)i = (PTx)i = pTi x = 0 for all i = 1, . . . , k (3.32)

as required. Hence, the projector P behaves as expected, leaving any vector in
the span of P invariant, but projecting any vector orthogonal to the span of P
onto 0.

Example:

P =

 1 0 0
0 1 0
0 0 0

 (3.33)

68

is an orthogonal projector that maps all vectors in R3 onto the x-y plane, while
keeping those vectors in the x-y plane unchanged:

P

 x
y
z

 =

 x
y
0

 , (3.34)

and

P

 x
y
0

 =

 x
y
0

 , while P

 0
0
z

 =

 0
0
0

 . (3.35)

It is easy to check P2 = P:

P2

 x
y
z

 = P

 x
y
0

 =

 x
y
0

 . (3.36)

�

Note: Given an orthogonal projector P we can also define

P⊥ = I−P (3.37)

which can be shown to be an orthogonal projector onto span(P)⊥, the orthogonal
complement of span(P). Then, we can express any vector x ∈ Rm as a sum

x =
(
P + (I−P)

)
x = Px + P⊥x. (3.38)

�

We will now use these definitions to go back to the problem discussed at the end
of the previous section, namely how to construct PA, an orthogonal projector
onto the span of any given m× n matrix A.

Let us now consider how we can make use of the concept of the orthogonal
projector PA onto span(A) to help understanding in solving the overdetermined
system Ax ∼= b. For notational simplicity, let us denote P = PA for now. First,
by definition, we get

PA = A,P⊥A = 0. (3.39)

Then we have

||b−Ax||22 = ||P(b−Ax) + P⊥(b−Ax)||22
= ||P(b−Ax)||22 + ||P⊥(b−Ax)||22 (by Pythagorean Theorem)

= ||Pb−Ax||22 + ||P⊥b||22. (3.40)

69

Therefore, we see that the least squares solution is given by the solution x
that satisfies the first term in the last relation, which is the solution to the
overdetermined linear system,

Ax = Pb. (3.41)

This is an intuitively clear result and is shown in Fig. 3 that the orthogonal
projection Pb of b gives y ∈ span(A), the closest vector to b.

Remember that we wish to transform our given overdeterminedm×n system
into an n × n square system, so that we can use the techniques we learned in
Chapter 2. Assuming rank(A) = n, there are two ways to construct orthogonal
projectors (i.e., symmetric and idempotent) explicitly, which allow us to have
transformation into the square system:

• P = A(ATA)−1AT .

• P = QQT , where Q is an m×n matrix whose columns form an orthonor-
mal bases (such Q is said to be orthogonal and satisfies QTQ = I) for
span(A). Obviously, this gives span(Q) = span(A).

First of all, we see that both choices of P easily satisfy PT = P and P2 = P.
Also, after substituting P into Eq. 3.41, one can respectively obtain the following
square systems:

• ATAx = ATb (note here we used ATP = ATPT = (PA)T = AT)

• QTAx = QTb (note here we used QTP = QTQQT = QT)

Notice that the first transformation – the easier construction of the two
– results in the system of normal equations which we already showed there
are some associated numerical issues. The second orthogonal transformation,
however, will provide us with a very useful idea on accomplishing so called the
QR factorization as will be shown in Section 5.

4. Invariant Transformations

We will now focus on examining several methods for transforming an overdeter-
mined m × n linear least squares problem Ax ∼= b into an n × n square linear
system A′x = b′ which leaves x unchanged and which we already know how to
solve using the methods of Chapter 2.

In seeking for invariant transformations we keep in mind that the sequence
of problem transformation we would like to establish is:

rectangular → square → triangular

Note: The second transformation (square to triangular) is what we already
have learned in Chapter 2; while we now try to learn the first transformation
(rectangular to square) in this chapter. �

70

4.1. Normal Equations

With rank(A) = n we already have seen several times the n × n symmetric
positive definite system of normal equations

ATAx = ATb (3.42)

has the invariant property of preserving the same solution x as the m× n least
squares problem Ax ∼= b.

As discussed, we could theoretically pursuit to use the Cholesky factoriza-
tion,

ATA = LLT , (3.43)

followed by solving the forward-substitution first Ly = ATb, and then the
backward-substitution later LTx = y. But we’ve seen there are numerical ac-
curacy and stability issues that are related to floating-point arithmetics as well
as condition number squaring effects. In this reason, we do not use the normal
equations in practice.

4.2. Orthogonal Transformations

In view of the potential numerical difficulties with the normal equations ap-
proach, we need an alternative that does not require ATA and ATb. In this
alternative, we expect a more numerically robust type of transformation.

Recall that in Chapter 2 we did use a similar trick to introduce transforma-
tions to a simpler system which was a triangular system. Can we use the same
triangular form for the current purpose? The answer is no simply because such
a triangular transformation does not preserve what we want to preserve in the
least squares problems now, the l2-norm.

What kind other transformation then preserve the norm, at the same time,
without changing the solution x? Hinted by the previous section, we see that
an orthogonal transformation given by Q, where Q is a orthogonal real square
matrix, i.e., QTQ = I (in other words, each column of Q is orthonormal basis)
would be a good candidate.

The norm-preserving property of Q can be easily shown:

||Qx||22 = (Qx)TQx = xTQTQx = xTx = ||x||22. (3.44)

Similarly, we also have

||QTx||22 = (QTx)TQx = xTQQTx = xTx = ||x||22. (3.45)

Remark: Orthogonal matrices are of great importance in many areas of nu-
merical computation because of their norm-preserving property. With this prop-
erty, the magnitude of errors will remain the same without any amplification.
Thus, for example, one can use orthogonal transformations to solve square linear
systems which will not require the need for pivoting for numerical stability. Al-
though it looks very attractive the orthogonalization process is significantly more
expensive computationally then the standard Gaussian elimination, so their su-
perior numerical properties come at a price. �

71

4.3. Triangular Least Squares

As we now prepared ourselves with a couple of transformations that preserves
the least squares solution, we are further motivated to seek for a more simplified
system where a least squares problem can be solved in an easier way. As seen in
the square linear systems in Chapter 2, we consider least squares problems with
an upper triangular matrix of the form:[

R
0

]
x ∼=

[
c1

c2

]
= c, (3.46)

where R is an n×n upper triangular matrix, x an n-vector. The right hand side
vector c is partitioned accordingly into an n-vector c1 and an (m−n)-vector c2.

We see that the least squares residual is given by

||r||22 = ||c1 −Rx||22 + ||c2||22, (3.47)

which tells us that the the least squares solution x satisfies

Rx = c1, (3.48)

which is solvable by back-substitution. The minimum residual then becomes

||r||22 = ||c2||22. (3.49)

4.4. QR Factorization

Let us now combine the two nice techniques, the orthogonal transformation
and the triangular least squares, into one, and we call this method the QR
factorization. The QR factorization method writes m× n (m > n) matrix A as

A = Q

[
R
0

]
, (3.50)

where Q is an m × m orthogonal matrix and R is an n × n upper triangular
matrix.

This QR factorization transforms the linear squares problem Ax ∼= b into a
triangular least squares problem. Do they both have the same solution? To see
this, we check:

||r||22 = ||b−Ax||22 (3.51)

= ||b−Q

[
R
0

]
x||22 (3.52)

= ||QT (b−Q

[
R
0

]
x)||22 (3.53)

= ||QTb−
[

R
0

]
x||22 (3.54)

= ||c1 −Rx||22 + ||c2||22, (3.55)

72

where the transformed right hand side

QTb =

[
c1

c2

]
, (3.56)

with n-vector c1 and an (m−n)-vector c2. As in the previous section, we make
the same conclusion on x that satisfies:

Rx = c1, (3.57)

which is solvable by back-substitution, and the minimum residual is

||r||22 = ||c2||22. (3.58)

We will study how to compute this QR factorization in the next section.

5. The QR factorization for Least Square problems

5.1. Preliminaries

See Chapter 7 of the textbook

Definition: A reduced QR factorization of a full rank m × n (m > n) matrix
A expresses A as

A = Q̂R̂ (3.59)

where Q̂ is an m × n matrix whose column vectors are orthonormal, and R̂ is
an n× n upper triangular matrix.

Definition: A full QR factorization of a full rank m × n (m > n) matrix A
expresses A as

A = QR (3.60)

where Q is an m×m orthogonal matrix (unitary, if A is complex) and R is an
m× n upper triangular matrix (i.e. a matrix whose entries rij are 0 if i > j).

The two definitions are related in the sense that Q̂ forms the first n column-
vectors of Q, and R̂ forms the first n rows of R. The last m− n columns of Q
are filled with vectors that are orthogonal to each other and to the span of Q̂,
while the last m− n rows of R are just filled with zeros. We therefore have

Q =
(
Q̂
∣∣∣qn+1 . . . qm

)
and R =

(
R̂
0

)
(3.61)

As it turns out, knowing Q̂ is all we need to construct the projector PA.
That’s because it can be shown that P = Q̂Q̂T is indeed a projector on the
subspace spanned by A, hence PA = P. To do this we must show that

• The span of P is the same as the span of A

73

• P2 = P

• PT = P.

Proving the second and third statements is very easy:

PT = (Q̂Q̂T)T = Q̂Q̂T (3.62)

P2 = Q̂Q̂T Q̂Q̂T = Q̂IQ̂T = Q̂Q̂T = P (3.63)

because Q̂T Q̂ is an n× n identity matrix by the orthonormality of the columns
of Q̂.

To show that the span of P is the same as a span of A is a little trickier,
but not much. We can first show that the span of Q̂ lies in the span of A by
noting that Q̂ = AR̂−1, so the column vectors of Q̂, qi = A(R̂−1)i (where

(R̂−1)i are the column vectors of R̂−1), are necessarily a linear combination of
the column vectors of A (see first lecture). Then, since the qi vectors are mutu-
ally orthogonal, they are also linearly independent. Finally, since there are n of
them, the rank of Q̂ is n, which is the same as the rank of A, so the span of Q̂ is
equal to the span of A. A series of very similar arguments can then be applied to
show that the span of P is equal to the span of Q̂, and therefore to the span of A.

This shows that P = Q̂Q̂T is the orthogonal projector onto the span of A,
namely PA, that we were looking for earlier. We then write

Ax = PAb = Q̂Q̂Tb→ Q̂TAx = Q̂Tb→ Q̂T Q̂R̂x = Q̂Tb→ R̂x = Q̂Tb
(3.64)

where we repeatedly used the fact that Q̂T Q̂ = I. In other words, an alternative
algorithm for solving the overdetermined system Ax = b involves

• Finding the reduced QR factorization of A, such that A = Q̂R̂

• Solving the exact system R̂x = Q̂Tb

Note that R̂x = Q̂Tb is an exact system since R̂ is n × n and x and Q̂Tb are
both n−long vectors. Also, since R̂ is upper triangular, the second step boils
down to a very basic back-substitution step! The crux of the method is therefore
not step 2, but step 1, the QR factorization.

To understand how to construct a QR factorization, it is worth trying to in-
terpret its meaning geometrically. A simple way of seing what the reduced QR
factorization does is to note that it constructs an orthonormal basis for the space
spanned by the column vectors of A, namely the basis formed by the column
vectors of Q̂. Furthermore, since

A = Q̂R̂→ aj = Q̂rj (3.65)

This explicitly writes each vector aj in this new orthonormal basis, and the
components of the vector rj are the coordinates of aj in the new basis.

74

There are a number of commonly used methods to construct the reduced QR
factorization of the matrix A. The two we will see here are

• Gram-Schmidt orthogonalization,

• Householder transformation (based on elementary reflectors).

There is another popular method that uses so-called Givens transformations,
which is based on plane rotations. This method can be found in many numerical
linear algebra text books but we will not cover it here. Finally, in all that
follows we now assume that A is real, although the various methods are very
easy to generalize for complex matrices using unitary transformations instead of
orthogonal ones.

5.2. QR decomposition using Gram-Schmidt Orthogonalization

See Chapters 8 and 11

The most straightforward method for computing the QR factorization is Gram-
Schmidt orthogonalization. It works directly with the expression A = Q̂R̂,
expressing it in vector form, and progressively solving for the columns of Q̂ and
the elements of R̂. To see how, note first that A = Q̂R̂ is equivalent to the
system of vector equations

a1 = r11q1

a2 = r12q1 + r22q2

...

ai =

i∑
k=1

rkiqk (3.66)

This shows that
q1 =

a1

||a1||
and r11 = ||a1|| (3.67)

Next, we have

q2 =
a2 − r12q1

r22
(3.68)

Once a2 − r12q1 is known we can calculate r22 = ||a2 − r12q1|| to normalize q2.
The value of r12 if found by requiring the orthogonality of q2 with q1: we need
qT1 q2 = 0 so r12 = qT1 a2 since q1 is normalized. This shows that

q2 =
a2 − (qT1 a2)q1

r22
=

a2 − q1q
T
1 a2

r22
=

(I− q1q
T
1)a2

r22
(3.69)

Note that in the last expression above, it is easy to show, based on what we
learned about projectors earlier, that q1q

T
1 is an orthogonal projector onto the

vector q1, that we shall call P1. This will come in handy later when interpreting

75

the process geometrically.

At the i-th step, we then have

qi =
ai −

∑i−1
k=1 rkiqk
rii

(3.70)

and requiring as before orthogonality of qi with all previously determined vectors
we get rki = qTk ai. This can be used to form ai−

∑i−1
k=1 rkiqk, and then qi after

normalization. And as before, we can also interpret

ai −
i−1∑
k=1

rkiqk = (I−
i−1∑
k=1

Pk)ai (3.71)

where Pk = qkq
T
k is a projector onto qk.

We can write the so-called basic Gram-Schmidt orthogonalization algorithm as
follows:

Algorithm: Basic Gram-Schmidt orthogonalization:

do i = 1 to n
[!loop over columns of A and Q̂]
qi = ai
do k = 1 to i− 1

rki = qTk ai
[!Form the coefficients of R̂]
qi = qi − rkiqk [!Compute qi]

enddo
rii = ||qi||
if rii = 0 stop
qi = qi/rii [!Normalize qi]

enddo

In this algorithm we treated ai and qi separately for clear exposition purpose,
but they can be shared in the same storage, with new qi gradually replacing the
ai �

While we derived the algorithm from mathematical considerations, it has a
very simple geometrical interpretation, illustrated in Figure 4.

Indeed, the first q1 is selected to be the unit vector in the direction of a1, and
successive vectors qi are constructed using the orthogonal projectors Pk to be
orthogonal to the previous ones. For instance, we see that (I−P1)a2 constructs
a vector that is perpendicular to q1 while lying in the plane spanned by a1 and
a2, and by successive application of the algorithm, (I−P1−P2− · · · −Pi−1)ai
constructs a vector that is perpendicular to the span of {q1,q2, . . . ,qi−1} while
lying in the span of {q1,q2, . . . ,qi−1,qi}

76

Figure 4. Geometrical interpretation of Gram-Schmidt orthogonalization

As it turns out, it can be shown that this Gram-Schmidt algorithm is unfor-
tunately numerically unstable (see below for more on this). However there is a
remarkably simple fix to that problem – simply switch the order of the opera-
tions, leading to the Modified Gram-Schmidt algorithm:

Algorithm: Modified Gram-Schmidt orthogonalization:

do i = 1 to n
[!First initialize temporary vectors vi as the ai]
vi = ai

enddo
do i = 1 to n

rii = ||vi||
qi = vi/rii [!Create qi normalizing vi]
do k = i+ 1 to n
[!Apply simple projector to all the vectors vk for k > i]

rik = qTi vk
vk = vk − rikqi

enddo
enddo

As before, we can alternatively store the q vectors into the columns of A as
the algorithm proceeds. With a bit of work, one can show that the operations
performed end up being exactly the same as in the basic Gram-Schmidt algo-

77

rithm, but their order is different, and the new ordering stabilizes the algorithm.
The modified algorithm has therefore become the standard in commercial pack-
ages.

It is also interesting to note that this modified algorithm can be viewed as
the successive multiplication of the matrix A from the right by upper triangular
matrices Ri, as

AR1R2 . . .Rn = Q̂ where Ri =



1
. . .

1
rii
− ri,i+1

rii
. . . − ri,n

rii
1

. . .
1


(3.72)

where the coefficients rij were defined earlier. Since the multiplication of upper
triangular matrices is another upper triangular one, and since the inverse of an
upper triangular matrix is also upper triangular, we then have

A = Q̂R̂ where R̂ = (R1R2 . . .Rn)−1 (3.73)

For this reason, the procedure is sometimes referred to as triangular orthog-
onalization (i.e. multiply by triangular matrices to form an orthogonal one).

Note that in practice, however, it is rather difficult to find examples of com-
monly occurring matrices for which an instability genuinely manifests itself in
the basic algorithm. Recall that for instability to occur an algorithm must
return an answer whose error does not scale with machine accuracy. See the
textbook Chapter 9 for such an example. What is much more common, how-
ever, is to note that both Gram-Schmidt-based QR decomposition algorithms
(standard and modified) suffer from the accumulation of round-off errors, and
this manifests itself in two ways when applied to poorly conditioned matrices:

• ||A− Q̂R̂|| � εmach (loss of accuracy)

• ||Q̂T Q̂− I|| � εmach (loss of orthogonality)

Let us see a simple example of this.

Example: Consider the general 2×2 matrix

A =

(
a b
c d

)
(3.74)

Applying either of the Gram-Schmidt algorithm (whose steps are exactly the
same for a 2×2 matrix), we have

A =

(
a b
c d

)
→ r11 =

√
a2 + c2 → A =

(
a√

a2+c2
b

c√
a2+c2

d

)
(3.75)

78

then

r12 =
ab+ cd√
a2 + c2

→ A =

(
a√

a2+c2
c(bc−ad)
a2+c2

c√
a2+c2

a(ad−bc)
a2+c2

)
(3.76)

We easily recognize D = ad − bc appear in the second column vector. Let us
assume, for the sake of simplicity, that D > 0 (a similar line of argument applies
if D < 0). We then finally normalize the second vector to get

r22 =
D√

a2 + c2
→ A =

1√
a2 + c2

(
a −c
c a

)
(3.77)

It is trivial to verify that, in this exact case, the column vectors of A are indeed
orthogonal. In addition, we can also check easily that A−QR = 0.

However, what happens when the matrix is nearly singular? In that case, recall
that D ' 0 even when a, b, c and d themselves are of order unity. We also
saw that, when performing floating point operations, the absolute error on the
subtraction of two numbers is equal to machine error times the size of the largest
number. In the calculations of the two components of the second column vector,
the error on D = ad− bc can therefore be as large as D if the latter is close to
zero, and so the result would be an approximate matrix

A =

(
a√

a2+c2
c(−D+ε1)
a2+c2

c√
a2+c2

a(D+ε2))
a2+c2

)
(3.78)

where ε1 and ε2 are order machine precision (if a, b, c and d are order unity).
If D = O(ε1) = O(ε2) as well, the second column can be quite far from being
orthogonal to the first. In addition, r22 will be of the same order as D, ε1 and
ε2, while r11 is of order a and/or c. The matrix R will then be very poorly
conditioned, with a condition number O(D−1). The relative error on the matrix
multiplication QR is therefore of order D−1εmach � εmach. �

The lack of both accuracy and orthogonality in the calculation of the QR de-
composition naturally carry over to the original Least Square problem we were
trying to solve. Recall that, if Q̂R̂ is known, then we can solve the Least Square
problem Ax = b by the two-step method Q̂T Q̂R̂x = Q̂Tb, and then solve the
upper-triangular n × n problem R̂x = Q̂Tb. The first step uses the fact that
Q̂T Q̂ = I, so large errors may appear if this is no longer true because of loss
of orthogonality. Compounding on this, the relative error of the second step
is proportional to the condition number of R̂, which is large if the problem is
poorly conditioned.

Luckily, the orthogonality problem of step 1 can be solved, even if the accuracy
problem of step 2 cannot (for poorly conditioned matrices). Doing so requires a
completely different approach to orthogonalization, using so-called Householder
transformations.

79

Example: Let us consider to solve the same least squares problem of the land
surveyors example given in Eq. 3.5, using Gram-Schmidt orthogonalization. The
first step is to normalize the first column of A:

r11 = ||a1||2 = 1.7321, q1 =
a1

r11
=


0.5774

0
0

−0.5774
−0.5774

0

 . (3.79)

Calculating orthogonalization processes and subtractions in Step 2 and Step
3, we first obtain

r12 = qT1 a2 = −0.5774, r13 = qT1 a3 = −0.5774, (3.80)

where a2 and a3 are the second and the third column of A. Continuing the
remaining procedures in Step 2 and Step 3 we get:

r2 = a2 − r12q1 =


0.3333

1
0

0.6667
−0.3333

−1

 , r3 = a3 − r13q1 =


0.3333

0
1

−0.3333
0.6667

1

 . (3.81)

The resulting transformed matrix now has q1 for its first column, together with
r2 and r3 for the unnormalized second and the third columns:

0.5774 0.3333 0.3333
0 1 0
0 0 1

−0.5774 0.6667 −0.3333
−0.5774 −0.3333 0.6667

0 −1 1

 (3.82)

Let us abuse our naming strategy and let a2 and a3 be the second and the
third columns of the new matrix now. Normalizing the second column gives

r22 = ||a2||2 = 1.6330, q2 =
a2

r22
=


0.2041
0.6124

0
0.4082
−0.2041
−0.6124

 . (3.83)

If we evaluate the orthogonalization of the second column against the third
column, we get:

r23 = qT2 a3 = −0.8165, (3.84)

80

and hence we further obtain yet another residual vector

r3 = a3 − r23q2 =


0.5
0.5

1
0

0.5
0.5

 . (3.85)

We now form another transformed matrix which has q2 for its second or-
thonormal column and r3 for its unnormalized third column:

0.5774 0.2041 0.5
0 0.6124 0.5
0 0 1

−0.5774 0.4082 0
−0.5774 −0.2041 0.5

0 −0.6124 0.5

 . (3.86)

Finally we normalize the last column, again abusing our naming strategy
and let the third column be a3:

r33 = ||a3||2 = 1.4142, q3 =
a3

r33
=


0.3536
0.3536
0.7071

0
0.3536
0.3536

 , (3.87)

and by replacing the last column of the last transformed matrix with q3 results
in the final transformed matrix

0.5774 0.2041 0.3536
0 0.6124 0.3536
0 0 0.7071

−0.5774 0.4082 0
−0.5774 −0.2041 0.3536

0 −0.6124 0.3536

 . (3.88)

Now collecting entries rij of R, we form

R =

 1.7321 −0.5774 −0.5774
1.6330 −0.8165

1.4142

 , (3.89)

which altogether provides the QR factorization:

A = QR =


0.5774 0.2041 0.3536

0 0.6124 0.3536
0 0 0.7071

−0.5774 0.4082 0
−0.5774 −0.2041 0.3536

0 −0.6124 0.3536


 1.7321 −0.5774 −0.5774

1.6330 −0.8165
1.4142

 .
(3.90)

81

Computing the right hand side transformation, QTb, we obtain

QTb =

 −376
1200
3417

 = c1. (3.91)

This allows us to solve the upper triangular system Rx = c1 by back-substitution,
resulting in the same solution as before:

xT = [1236, 1943, 2416]. (3.92)

�

5.3. QR decomposition using Householder Transformations

See Chapter 10 of the textbook

5.3.1. Householder matrices Given a vector v with ||v|| = 1, its correspond-
ing Householder matrix H is

H = I− 2vvT (3.93)

We see that from the definition, H is both

• symmetric, i.e., HT = H, and

• orthogonal, i.e., HTH = I, hence HT = H−1.

The geometrical interpretation of matrix H is actually quite simple: it is a
reflection across the plane perpendicular to v. To see this, note that for any
vector parallel to v (namely w = αv),

Hw = αHv = α(v − 2vvTv) = −αv = −w (3.94)

while for any vector w perpendicular to v, we have

Hw = w − 2vvTw = w (3.95)

These two properties define an orthogonal reflection about a plane: any vector
parallel to the plane exactly reflected (w → −w), while vectors perpendicular
to that plane remain invariant .

Remark: First recall that the orthogonal projector onto span(v) is given by

P = v(vTv)−1vT =
vvT

vTv
. (3.96)

Also the orthogonal complement projector onto span(v)⊥ is given by

P⊥ = I−P = I− vvT

vTv
. (3.97)

82

This projector P⊥ gives the projection of a onto the hyperplane,

P⊥a = (I−P)a = a− v
vTa

vTv
, (3.98)

which is only the half way through to the desired location, the first coordinate
axis in the current example.

In order to reach the first coordinate axis we therefore need to go twice as
far, which gives us our final form of H:

H = I− 2
vvT

vTv
. (3.99)

The full design construction is illustrated in Fig. 5, where the hyperplane is
given by span(v)⊥ = {x : vTx = 0}, for some v 6= 0.

Figure 5. Geometric interpretation of Householder transformation as re-
flection.

Note: We should make a quick comment on the choice of signs of α = ±||a||2
now. Depending the choice of the sign, we get the closer transformation −||a||2e1

from a (shown in the left panel in Fig. 5), or the farther one ||a||2e1 from a
(shown in the right panel in Fig. 5). Both choices should work just fine in princi-
ple, however, we know from experience that dealing with subtraction that results
in small in magnitude, i.e., v = a − αe1, is prone to numerical errors due to
finite-precision arithmetic. In this reason, we prefer to choose the sign for α that
yields the point on the first coordinate axis as farther away as possible from a. �

5.3.2. Relationship between Householder transformations and QR decomposi-
tion. A QR factorization based on Householder transformations is sometimes
known as the orthogonal triangularization of A, by contrast with the Gram-
Schmidt algorithm which performs a triangular orthogonalization (see above).
The terminology implies that A is now gradually transformed into an upper

83

triangular matrix R by successive application of orthogonal transformations, of
the kind

QnQn−1 . . .Q1A = R (3.100)

The product of orthogonal matrices QnQn−1 . . .Q1 is also orthogonal, so if we
call it QT , we then have

A = QR where QT = QnQn−1 . . .Q1 (3.101)

Note that the Householder QR decomposition can only perform full QR decom-
positions which is why we have now begun to refer to the matrices as Q and
R as defined in the last lecture, with Q an m×m matrix, and R an m×n matrix.

Based on this idea, we want to find a way of gradually zeroing out the sub-
diagonal elements of A, which is superficially similar to what Gaussian elimina-
tion or LU decomposition do. The important difference however is that these
operations must be done by orthogonal transformations! So how do we construct
them? Here again, having a geometric mind can really help.

In what follows, it will be useful to remember that orthogonal operations on

vectors are norm-preserving, since ||Qx|| =
√

(Qx)TQx =
√

xTx = ||x||, using
the fact that QTQ = I. In the first step of transforming A into an upper triangu-
lar matrix, we want to zero out all the entries below the first one. Geometrically
speaking, this involves creating an orthogonal transformation that takes the first
column vector a1, and returns a vector Q1a1 = ±||a1||e1, i.e. with the same
norm but pointing in the e1 direction. Since orthogonal transformations are
either rotations or reflections, we see that a simple way of constructing Q1 is to
construct the relevant plane that reflects a1 onto±||a1||e1, as shown in Figure 6.

Figure 6. Geometric interpretation of Householder transformation H as
reflection. The transformation operator H is represented in two successive
transformations denoted as the green arrow, followed by the purple arrow,
across the hyperplane in dashed pale-blue line.

84

The left panel in Fig. 6 shows the principle of the method that reflects the
given vector a1 to produce −||a1||e1. The reflection is established by bisecting
the angle between a1 and the the first coordinate axis. Obviously, the norm is
well preserved in this reflection.

Clearly, another transformation is also available, as indicated on the right panel
in Fig. 6, where in this case the vector a1 is reflected onto ||a1||e1.

Both choices of reflection should work just fine in principle, but the first can
be shown to be more prone to numerical errors due to finite-precision arithmetic
than the second. For this reason, we prefer to choose the sign ± that is equal to
minus the sign of aT1 e1 (i.e. −sign(a11)).

Geometrically speaking, we therefore see that we need a Householder trans-
formation (an orthogonal reflection across a plane) H1, such that

H1a1 = −s1e1 (3.102)

where s1 = sign(a11)||a1|| is a signed norm of a1. The correct vector v1 that can
perform this transformation is found by solving

(I− 2v1v
T
1)a1 = −s1e1 (3.103)

and requiring that v1 be normalized. The first condition implies that

v1 =
a1 + s1e1

2vT1 a1
(3.104)

which looks awkward because of the term in the denominator. But since this
term is just a constant, and since we require v1 to be normalized, we then simply
have

v1 =
a1 + s1e1

||a1 + s1e1||
(3.105)

which can now be constructed easily once a1 is known. Note that, effectively,
we have

v1 = (a11 + s1, a21, a31, . . . , am1)T /||v1|| (3.106)

To summarize, we can zero out the elements below the diagonal in the first col-
umn of a1 simply by constructing v1, then applying the corresponding House-
holder reflection H1 to A. The effect of H1 on the other columns of A on the
other hand is benign (i.e. does not do anything special).

Next, we look at the second column. This time, we effectively want to transform
a2 into a vector that lies in the plane formed by e1 and e2, without moving the
transformed vector a1 away from e1. For e1 to be invariant by transformation
H2, e1 must lie in the plane of reflection, and therefore be perpendicular to
the vector v2. Hence v2 must have a null first entry. By analogy with the
construction of v1, and following this last remark, we therefore try

v2 = (0, a22 + s2, a32, . . . , am2)T /||v2|| (3.107)

85

and H2 = I− 2v2v
T
2 , where

s2 = sign(a22)

(
m∑
k=2

a2
k2

)1/2

(3.108)

It can be verified that H2 indeed zeroes out the subdiagonal elements of the
second column of A, without modifying the first column. More generally, we
then have at the j-th step, Hj = I− 2vjv

T
j where

vj = (0, . . . , 0, ajj + sj , aj+1,j , . . . , amj)
T /||vj || (3.109)

and

sj = sign(ajj)

 m∑
k=j

a2
kj

1/2

(3.110)

After n applications of the algorithm, we have

Hn . . .H1A = R (3.111)

where each Hj is orthogonal by construction, as required, and QT = Hn . . .H1.

This then suggests the following QR decomposition algorithm:

Algorithm: Householder QR factorization algorithm:

do j = 1 to n
![loop over columns]

sj = sign(ajj)
√∑m

i=j a
2
ij

! [compute signed norm]
vj = [0, · · · 0, ajj + sj , aj+1,j , · · · , amj]T
vj = vj/||vj ||
! [compute Householder vector and normalize it]
A = A− 2vjv

T
j A ![Update A]

enddo

This algorithm gradually transforms A into R, but does not compute nor save
Q. This turns out not to be needed as long as the vj vectors are saved. Indeed,
should we ever want to compute the action of Q or QT onto a vector x, we
simply have to remember their definitions, and the fact that each Hj matrix is
symmetric and orthogonal at the same time. This implies

QTx = Hn . . .H1x = (I− 2vnv
T
n) . . . (I− 2v1v

T
1)x

Qx = (Hn . . .H1)−1x = H−1
1 . . .H−1

n x = H1 . . .Hnx

= (I− 2v1v
T
1) . . . (I− 2vnv

T
n)x (3.112)

86

In each case, this implies repeated application of Hj to a vector, which can easily
done as

Hjx = x− 2vj(v
T
j x). (3.113)

There are several options to save the vectors vj . One can, as in the example
above, save them in a separate matrix V whose columns are vj . This is very
simple, but not very memory efficient nor computationally efficient. A much
more efficient way it to save the elements of vj whose indices range from j+1 to
m, in the column elements of the matrix A that have just been zeroed out. We
then simply have to decide what to do with the diagonal elements of A: we can
either (i) choose to put all the elements of R including the diagonal elements
in the corresponding upper triangular region of A and save the j-th elements
of the vj , i.e., vjj = ajj + sj vectors in a separate array, or (ii) the converse,
namely to put the element ajj + sj in diag(A) and return the diagonal elements
of R (namely each −sj) as a separate array. Some codes choose the first option
(c.f. LAPACK) some choose the second (c.f. Numerical recipes), so it’s really
important to read the code description!

Finally, it is worth noting that the Householder QR algorithm is backward stable
(see Chapter 16), with all the properties that this implies. The orthogonality
of Q is guaranteed to be close to machine accuracy, but roundoff errors in Q
and R mean that the reconstruction QR is not necessarily that close to A for
poorly conditioned problem.

5.3.3. Solving a Least-Square problem using the QR Householder decomposi-
tion. While the Gram-Schmidt algorithm returns the reduced QR decomposi-
tion A = Q̂R̂, which can then easily be used to solve the n × n exact problem
R̂ = Q̂Tb, the Householder method returns the full QR decompostion A = QR.
While the equality Rx = QTb is well-defined in the sense that it equates two
m−long vectors, the problem appears ill-posed because there are only n un-
knowns (the n components of x). This mismatch, however, does not matter as

long as we remember that R contains R̂ in its first n rows, and only zeros after-
wards, while the matrix Q contains Q̂ in its first columns, and other orthogonal
vectors after that. This means that we can recover the original R̂x = Q̂Tb
problem by looking only at the first n lines of the problem Rx = QTb and
ignoring the other lines.

Because the QR method using Householder transformation guarantees the or-
thogonality of Q to within machine accuracy, it is vastly preferred over Gram-
Schmidt orthogonalization when used in the context of Least-Square problems.
So one may wonder why ever use the Gram-Schmidt method? The answer to
that question lies in the fact that the Householder algorithm is inherently serial
and cannot be parallelized: each column j must be zeroed out before work can
be done on column j+ 1. This is not true of modified Gram-Schmidt algorithm,
where the entire matrix A is orthogonalized at the same time by the iterative
process, rather than doing so one vector at a time. Some parallel QR algorithms
therefore work with the Gram-Schmidt method instead, when it is perceived
that the loss of accuracy is an acceptable price to pay for a vast gain in time.

87

Example: Let us now solve the land surveyor’s least squares problem given by
the system in Eq. 3.5 using Householder QR factorization:

Ax =


1 0 0
0 1 0
0 0 1
−1 1 0
−1 0 1

0 −1 1


 h1

h2

h3

 ∼=


1237
1941
2417
711

1177
475

 = b. (3.114)

Recall that the solution we assumed to know was given by

xT = [h1, h2, h3] = [1236, 1943, 2416], (3.115)

and let’s see if we get this solution indeed.

The first Householder step is to construct the Householder vector v1 that
annihilates the subdiagonal entries of the first column a1 of A with, in this case,
s1 = ||a1||2 =

√
3 ∼= 1.7321,

v1 = a1 + s1e1 =


1
0
0
−1
−1

0

+


1.7321

0
0
0
0
0

 =


2.7321

0
0
−1
−1

0

 . (3.116)

Applying the resulting H1 to the first column gives

H1a1 = a1 − 2v1
vT1 a1

vT1 v1
=


−1.7321

0
0
0
0
0

 . (3.117)

Applying H1 to the second and third columns and also the right hand side vector
b in a similar way gives, respectively:

H1a2 = a2 − 2v1
vT1 a2

vT1 v1
=


0.5774

1
0

0.7887
−0.2113

−1

 , (3.118)

H1a3 = a3 − 2v1
vT1 a3

vT1 v1
=


0.5774

0
1

−0.2113
0.7887

1

 , (3.119)

88

and

H1b = b− 2v1
vT1 b

vT1 v1
=


376

1941
2417
1026
1492
475

 . (3.120)

Putting all things together, we get

H1A =


−1.7321 0.5774 0.5774

0 1 0
0 0 1
0 0.7887 −0.2113
0 −0.2113 0.7887
0 −1 1

 , H1b =


376

1941
2417
1026
1492
475

 . (3.121)

Next, we compute the second Householder vector v2 that annihilates the
subdiagonal entries of the second column of H1A and leave the first entry 0.5774
unchanged (i.e., we choose all entries of a2 except for the first entry 0.5774):

a2 =


0
1
0

0.7887
−0.2113

−1

 . (3.122)

Then, with s2 = ||a2||2 = 1.6330, we get

v2 = a2 + s2e2 =


0
1
0

0.7887
−0.2113

−1

+


0

1.6330
0
0
0
0

 =


0

2.6330
0

0.7887
−0.2113

−1

 . (3.123)

Now we apply H2 = I−2v2
vT
2

vT
2 v2

onto the second and the third columns of H1A

as well as H1b, where the actual operation begins from the second entry in both
columns, keeping the first entries unchanged. Writing these out explicitly, we
get:

H2


0.5774

1
0

0.7887
−0.2113

−1

 =
(
I− 2v2

vT2
vT2 v2

)


0.5774
1
0

0.7887
−0.2113

−1

 =


0.5774
−1.6330

0
0
0
0

 , (3.124)

89

H2


0.5774

0
1

−0.2113
0.7887

1

 =
(
I− 2v2

vT2
vT2 v2

)


0.5774
0
1

−0.2113
0.7887

1

 =


0.5774
0.8165

1
0.0333
0.7232
0.6899

 , (3.125)

so that we have:

H2H1A =


−1.7321 0.5774 0.5774

0 −1.6330 0.8165
0 0 1
0 0 0.0333
0 0 0.7232
0 0 0.6899

 , H2H1b =


376

−1200
2417

85
1744
1668

 . (3.126)

The last step now uses the third Householder vector v3 for annihilating the
subdiagonal entries of the third column of H2H1A by considering

a3 =


0
0
1

0.0333
0.7232
0.6899

 . (3.127)

This gives s3 = ||a3||2 = 1.4142 and hence we get

v3 = a3 + s3e3 =


0
0
1

0.0333
0.7232
0.6899

+


0
0

1.4142
0
0
0

 =


0
0

2.4142
0.0332
0.7231
−0.6899

 . (3.128)

Applying the final Householder transformation with H3 = I − 2v3
vT
3

vT
3 v3

to the

third column of H2H1A gives

H3H2H1A =


−1.7321 0.5774 0.5774

0 −1.6330 0.8165
0 0 −1.4142
0 0 0
0 0 0
0 0 0

 =

[
R
0

]
, (3.129)

and

H3H2H1b =


376

−1200
−3417

5
3
1

 = QTb =

[
c1

c2

]
. (3.130)

90

We now can solve the upper triangular system Rx = c1 by back-substitution to
obtain

xT = [h1, h2, h3] = [1236, 1943, 2416]. (3.131)

Finally, the minimum residual is given by ||r||22 = ||c2||22 = 35. �

Chapter 4

Eigenvalue Problems

In this chapter we now look at a third class of important problems in Numerical
Linear Algebra, which consist in finding the eigenvalues and eigenvectors of a
given m×m matrix A, if and when they exist. As discussed in Chapter 1, nu-
merical methods for finding eigenvalues and eigenvectors differ significantly from
what one may do analytically (i.e. construction and solution of the characteris-
tic polynomial). Instead, eigenvalue algorithms are always based on iterative
methods.

In what follows, we first illustrate how very simply iterative methods can
actually work to find specific eigenvalues and eigenvectors of a matrix A. For
simplicity, these methods assume the matrix A is real and symmetric, so the
eigenvalues are real and symmetric too, and the eigenvectors are orthogonal.
Later, we relax these conditions to construct eigenvalue revealing algorithms
that can find all the eigenvalues, real or complex, of any matrix A.

Before we proceed, however, let’s see a few example of applied mathematical
problems where we want to find the eigenvalues of a matrix.

1. Eigenvalue problems in applied mathematics

The following examples are very basic examples that come up in simple ODE and
PDE problems, that you may encounter in AM 212A and AM 214 for instance.
Other more complex examples come up all the time in fluid dynamics, control
theory, etc.

1.1. A simple Dynamical Systems problem

Consider the set of m nonlinear autonomous ODEs for m variables written as

ẋi = fi(x) for i = 1 . . .m (4.1)

where x = (x1, x2, . . . , xm)T , and the functions fi are any nonlinear function of
the coefficients of x. Suppose a fixed point of this system is known, for which
fi(x?) = 0 for all i. Then, to study the stability of this fixed point, we consider
a small displacement ε away from it such that

fi(x? + ε) = fi(x?) +
m∑
j=1

∂fi
∂xj

∣∣∣∣
x?

εj =
m∑
j=1

∂fi
∂xj

∣∣∣∣
x?

εj (4.2)

91

92

The ODE system becomes, near the fixed point,

ε̇i =
m∑
j=1

∂fi
∂xj

∣∣∣∣
x?

εj for i = 1 . . .m (4.3)

or in other words
ε̇ = Jε (4.4)

where J is the Jacobian matrix of the original system at the fixed point. This is
a simple linear system now, and we can look for solutions of the kind εi ∝ eλt,
which implies solving for the value(s) of λ for which

Jε = λε (4.5)

If any of the eigenvalues λ has a positive real part, then the fixed point is
unstable.

1.2. A simple PDE problem

Suppose you want to solve the diffusion equation problem

∂f

∂t
=

∂

∂x

[
D(x)

∂f

∂x

]
(4.6)

This problem is slightly more complicated than usual because the diffusion co-
efficient is a function of x. The first step would consist in looking for separable
solutions of the kind

f(x, t) = A(x)B(t) (4.7)

where it is easy to show that

dB

dt
= −λB (4.8)

d

dx

[
D(x)

dA

dx

]
= −λA (4.9)

where, on physical grounds, we can argue that λ ≥ 0. If the domain is periodic,
say of period 2π, we can expand the solution A(x) and the diffusion coefficient
D(x) in Fourier modes as

A(x) =
∑
m

ame
imx and D(x) =

∑
m

dme
imx (4.10)

where the {dm} are known, but the {am} are not. The equation for A becomes

d

dx

[∑
n

dne
inx
∑
m

imame
imx

]
= −λ

∑
k

ake
ikx (4.11)

and then ∑
m,n

m(m+ n)dname
i(m+n)x = λ

∑
k

ake
ikx (4.12)

93

Projecting onto the mode eikx we then get∑
m

mkdk−mam ≡
∑
m

Bkmam = λak (4.13)

or, in other words, we have another matrix eigenvalue problem Bv = λv where
the coefficients of the matrix B were given above, and the elements of v are the
Fourier coefficients {an}. The solutions to that problem yield both the desired
λs and the eigenmodes A(x), which can then be used to construct the solution
to the PDE.

Many other examples of eigenvalue problems exist. You are unlikely to go
through your PhD without having to solve at least one!

1.3. Localizing Eigenvalues: Gershgorin Theorem

For some purposes it suffices to know crude information on eigenvalues, instead
of determining their values exactly. For example, we might merely wish to know
rough estimations of their locations, such as bounding circles or disks. The
simplest such “bound” can be obtained as

ρ(A) ≤ ||A||. (4.14)

This can be easily shown if we take λ to be |λ| = ρ(A), and if we let x be an
associated eigenvector ||x|| = 1 (recall we can always normalize eigenvectors!).
Then

ρ(A) = |λ| = ||λx|| = ||Ax|| ≤ ||A|| · ||x|| = ||A||. (4.15)

A more accurate way of locating eigenvalues is given by Gershgorin’s The-
orem which is stated as the following:

Theorem: (Gershgorin’s Theorem) Let A = {aij} be an n× n matrix and let
λ be an eigenvalue of A. Then λ belongs to one of the circles Zi given by

Zk = {z ∈ R or C : |z − akk| ≤ rk}, (4.16)

where

rk =
n∑

j=1,j 6=k
|akj |, k = 1, · · · , n. (4.17)

Moreover, if m of the circles form a connected set S, disjoint from the remain-
ing n −m circles, then S contains exactly m of the eigenvalues of A, counted
according to their algebraic multiplicity.

Proof: Let Ax = λx. Let k be the subscript of a component of x such that
|xk| = maxi |xi| = ||x||, then we see that the k-th component satisfies

λxk =

n∑
j=1

akjxj , (4.18)

94

so that

(λ− akk)xk =

n∑
j=1,j 6=k

akjxj . (4.19)

Therefore

|λ− akk| · |xk| ≤
∑

j=1,j 6=k
|akj | · |xj | ≤

∑
j=1,j 6=k

|akj | · ||x||. (4.20)

�

Example: Consider the matrix

A =

 4 1 0
1 0 −1
1 1 −4

 . (4.21)

Then the eigenvalues must be contained in the circles

Z1 : |λ− 4| ≤ 1 + 0 = 1, (4.22)

Z2 : |λ| ≤ 1 + 1 = 2, (4.23)

Z3 : |λ+ 4| ≤ 1 + 1 = 2. (4.24)

Note that Z1 is disjoint from Z2 ∪ Z3, therefore there exists a single eigenvalue
in Z1. Indeed, if we compute the true eigenvalues, we get

λ(A) = {−3.76010,−0.442931, 4.20303}. (4.25)

�

2. Invariant Transformations

As before we seek for a simpler form whose eigenvalues and eigenvectors are
determined in easier ways. To do this we need to identify what types of trans-
formations leave eigenvalues (or eigenvectors) unchanged or easily recoverable,
and for what types of matrices the eigenvalues (or eigenvectors) are easily de-
termined.

• Shift: A shift subtracts a constant scalar σ from each diagonal entry of a
matrix, effectively shifting the origin.

Ax = λx =⇒ (A− σI)x = (λ− σ)x. (4.26)

Thus the eigenvalues of the matrix A− σI are translated, or shifted, from
those of A by σ, but the eigenvectors are unchanged.

• Inversion: If A is nonsingular and Ax = λx with x 6= 0, then

A−1x =
1

λ
x. (4.27)

Thus the eigenvalues of A−1 are reciprocals of the eigenvalues of A, and
the eigenvectors are unchanged.

95

• Powers: Raising power of a matrix also raises the same power of the eigen-
values, but keeps the eigenvectors unchanged.

Ax = λx =⇒ A2x = λ2x =⇒ · · · =⇒ Akx = λkx. (4.28)

• Polynomials: More generally, if

p(t) = c0 + c1t+ c2t
2 + · · · cktk (4.29)

is a polynomial of degree k, then we define

p(A) = c0I + c1A + c2A
2 + · · · ckAk. (4.30)

Now if Ax = λx then p(A)x = p(λ)x.

• Similarity: We already have seen this in Eq. 1.39 – Eq. 1.43.

• Transpose: A and AT have the same eigenvalues. This can be proved by
realizing that

(A− λI)T = AT − λI. (4.31)

Since determinant is invariant under matrix transposes (i.e., det(B) =
det(BT) for any matrix B), we get

det (A− λI) = det
(

(A− λI)T
)

= det
(
AT − λI

)
, (4.32)

which implies that AT − λI and A − λI have the same characteristic
polynomial.

3. Iterative ideas

See Chapter 27 from the textbook

In this section, as discussed above, all matrices are assumed to be real and
symmetric.

3.1. The Power Iteration

We can very easily construct a simple algorithm to reveal the eigenvector corre-
sponding to the largest eigenvalue of a matrix. To do so, we simply apply the
matrix A over, and over, and over again on any initial seed vector x. By the
properties of the eigenvalues and eigenvectors of real, symmetric matrices, we
know that the eigenvectors {vi}, for i = 1 . . .m, form an orthogonal basis in
which the vector x can be written as

x =
m∑
i=1

αivi (4.33)

Then

Ax =
m∑
i=1

λiαivi ⇒ Anx =
m∑
i=1

λni αivi (4.34)

96

If we call the eigenvalue with the largest norm λ1, then

Anx = λn1

m∑
i=1

(
λi
λ1

)n
αivi (4.35)

where, by construction, |λi/λ1| < 1 for i > 1. As n→∞, all but the first term
in that sum tend to zero, which implies that

lim
n→∞

Anx = lim
n→∞

λn1α1v1 (4.36)

which is aligned in the direction of the first eigenvector v1. In general, we see
that the iteration yields a sequence {x(n)} = {Anx} converges to the eigenvector
v1 with normalization

xn ≡
x(n)

||x(n)||
≈ λn1α1v1

||λn1α1v1||
= ±v1. (4.37)

To approximate the corresponding value λ1, we compute

λ(n) = xTnAxn ≈ (±v1)TA(±v1) = (±v1)Tλ1(±v1) = λ||v1||2 = λ1. (4.38)

Because of the rapid increase in the norm of the vector Anx, it is prefer-
able to normalize the vector obtained at each iteration before applying A again.
But the result remains otherwise unchanged. The Power Iteration algorithm is
therefore simply

Algorithm: Power Iteration algorithm:

x=arbitrary nonzero vector with ||x|| = 1
do while ||r|| > desired accuracy

y = Ax
||Ax|| ! [Calculate new normalized vector]

r = y − x ! [Calculate difference between old and new]
x = y ! [Replace old by new]

enddo

This algorithm takes any initial vector, and gradually rotates it until it
points in the direction of v1 (unless by some weird and unlikely coincidence that
vector is orthogonal to v1). It is clear from its construction that the convergence
rate depends on the ratios |λi/λ1|. If they are all small, then the algorithm
converges rapidly, but otherwise the convergence can be painfully slow. In addi-
tion, this doesn’t tell us what the corresponding eigenvalue is, nor what any of
the other eigenvectors and eigenvalues are! But at the very least, it illustrates
how simple iterations of a most basic algorithm can reveal something about the
eigenspace and spectrum of a matrix. Let us now build on this method gradually.

Example: Consider the matrix

A =

[
3 1
1 3

]
(4.39)

97

and let’s compute the dominant (i.e., largest in magnitude) eigenvalue λ1 by
power iteration. We start with an initial vector, say,

x0 =
[

0 1
]T
. (4.40)

We can analytically evaluate the two eigenvalues of A which are λ1 = 2 and λ2 =
4. The corresponding eigenvectors are v1 = 1√

2
[−1, 1]T and v2 = 1√

2
[1, 1]T ,

respectively.

Table 1. Power iteration for the dominant eigenvalue. The normalization
is obtained with l2 norm.

k xk = (x1, x2)k λ(k)

0 (0, 1) N/A
1 (0.316227766016838, 0.948683298050514) 3.600000000000000
2 (0.514495755427527, 0.857492925712544) 3.882352941176471
3 (0.613940613514921, 0.789352217376326) 3.969230769230770
4 (0.661621637086846, 0.749837855365093) 3.992217898832684
5 (0.684675461664049, 0.728848072093987) 3.998048780487805
6 (0.695973285238859, 0.718067675246442) 3.999511837930193
7 (0.701561099839534, 0.712609306136219) 3.999877937137626
8 (0.704339271660849, 0.709863501242503) 3.999969482887529
9 (0.705724367193419, 0.708486497789088) 3.999992370634572

We see from Table 1 that the k-th lambda value λ(k) converges to the dominant
eigenvalue λ2 = 4. �

Remark: Power iteration works well in practice, but it can fail for a number
of reasons:

• If the initial guess vector x = x0 has no component in the dominant
eigenvector v1 that corresponds to λ1, i.e., α1 = 0 in Eq. (4.33), then
the iteration doesn’t work. One does not need to worry about this case
too much as the probability this may happen is extremely unlikely if x0

is randomly chosen. Moreover, in practice, roundoff errors naturally help
introduce such a component.

• If there are multiple eigenvalues whose modulus are the same and maxi-
mum, the iteration may converge to a vector that is a linear combination
of the corresponding multiple eigenvectors.

• For a real matrix and real initial vector, the iteration cannot converge to
a complex vector.

�

98

3.2. The Inverse Iteration

The Inverse Iteration is a pretty powerful method that addresses two of the
problems of the Power Iteration. It accelerates the convergence, and can find
eigenvectors other than the one corresponding to the fastest-growing eigenvalue.
There is a price to pay, however, which is that we have to have an estimate of
the eigenvalue corresponding to the eigenvector we are looking for.

The Inverse Iteration algorithm is based on the realization that for any µ that
is not exactly equal to one of the eigenvalues, then

• The eigenvectors of (A− µI)−1 are the same as the eigenvectors of A

• The eigenvalues of (A − µI)−1 corresponding to each eigenvector vi are
(λi − µ)−1 where λi is the eigenvalue of A corresponding to vi.

To prove these statements, we start with

Avi = λivi ⇒ (A− µI)vi = (λi − µ)vi

⇒ vi = (λi − µ)(A− µI)−1vi ⇒ (A− µI)−1vi =
1

λi − µ
vi (4.41)

We can now use this result to our advantage. Suppose that we have a rough
estimate µ of any arbitrary (as opposed to the largest) eigenvalue λi. Then, by
construction, 1

λi−µ is the largest eigenvalue of (A − µI)−1. We can then do a

Power Iteration on the matrix B = (A− µI)−1 to find the corresponding eigen-
vector vi, which happens to be an eigenvector of both A and (A− µI)−1 .

Algorithm: Inverse Iteration algorithm

Initialize µ
B = (A− µI)−1

do while ||r|| > desired accuracy
y = Bx

||Bx|| ! [Calculate new normalized vector]
r = y − x ! [Calculate difference between old and new]
x = y ! [Replace old by new]

enddo

The disadvantage of this algorithm is that it requires a good estimate of a
certain eigenvalue to get good convergence on its corresponding eigenvector. In
what follows, we now learn a new trick to speed up convergence very significantly.

Example: Consider again the matrix

A =

[
3 1
1 3

]
(4.42)

and let’s find λ1 = 2 this time using inverse iteration. We take the same initial
vector

x0 =
[

0 1
]T
. (4.43)

99

Table 2. Inverse iteration for the smallest eigenvalue with different values
of shift factor µ = 1 and 1.9. The normalization is obtained with L2 norm.

k xk = (x1, x2)k λ(k) with µ = 1.0

0 (0, 1) N/A
1 (-0.447213595499958, 0.894427190999916) 2.200000000000000
2 (-0.624695047554424, 0.780868809443030) 2.024390243902439
3 (-0.680451099367278, 0.732793491626299) 2.002739726027397
4 (-0.698323852075327, 0.715781948377211) 2.000304785126485
5 (-0.704190913994984, 0.710010673614777) 2.000033869602032
6 (-0.706136148677213, 0.708076083151601) 2.000003763345764
7 (-0.706783384584535, 0.707430029950121) 2.000000418150229
8 (-0.706998998735688, 0.707214547210912) 2.000000046461145
9 (-0.707070855527723, 0.707142705020206) 2.000000005162351

k xk = (x1, x2)k λ(k) with µ = 1.9

0 (0, 1) N/A
1 (-0.672672793996313, 0.739940073395944) 2.004524886877828
2 (-0.705501550645646, 0.708708375875853) 2.000010283728057
3 (-0.707030423886725, 0.707183130241776) 2.000000023319231
4 (-0.707103145311582, 0.707110417042818) 2.000000000052878
5 (-0.707106608050068, 0.707106954322984) 2.000000000000120
6 (-0.707106772941954, 0.707106789431141) 2.000000000000000
7 (-0.707106780793948, 0.707106781579147) 2.000000000000000
8 (-0.707106781167852, 0.707106781205243) 2.000000000000000
9 (-0.707106781185657, 0.707106781187438) 2.000000000000000

As shown in Table 2 the k-th iterated eigenvalue λ(k) converges to λ1 = 2 of the
matrix A. It is also shown that the iteration with µ = 1.9 which is closer to
λ1 = 2 is faster than than the case with with µ = 1, converging in 6 steps.
�

What does this tell us? This suggests that we could now use Gershgorin
theorem to estimate the locations of target eigenvalues, and choose µ accordingly
in order to accelerate the search for all eigenvalues.

3.3. The Rayleigh Quotient iteration

3.3.1. The Rayleigh Quotient. A Rayleigh Quotient is a very useful concept
that comes up both in Linear Algebra and in methods for PDEs (AM 212A).
As we shall see, it can help estimate an eigenvalue, as long as the eigenvector is
known.

100

Definition: Given an m × m matrix A, the Rayleigh Quotient is a function
from Rm to R which, for each vector x, returns the scalar function

r(x) =
xTAx

xTx
(4.44)

It is very easy to show that if x is the eigenvector vi of matrix A, then
r(vi) = λi, where λi is the eigenvalue corresponding to vi.

What is much more interesting, however, is that the eigenvectors are actu-
ally fixed points of the function r(x), and to be precise, they are all local minima
of this function. To prove that they are fixed points, let’s evaluate ∇r:

∇r =

(
∂r

∂x1
, . . . ,

∂r

∂xm

)T
(4.45)

Each individual component of this vector is

∂r

∂xi
=

∂

∂xi

∑
j,k xjAjkxk∑

j x
2
j

(4.46)

=
1

||x||2
∂

∂xi

∑
j,k

xjAjkxk −
xTAx

||x||4
∂

∂xi

∑
j

x2
j (4.47)

=
1

||x||2

∑
k

Aikxk +
∑
j

Ajixj

− xTAx

||x||4
(2xi) (4.48)

Recalling that we are working with real symmetric matrices, Aji = Aij so∑
k Aikxk =

∑
j Ajixj . This implies

∇r =
2

xTx
(Ax− r(x)x) (4.49)

This is true in general, but if x is one of the eigenvectors, then Avi = λivi, and
r(vi) = λi. As a result

∇r(vi) = 0 (4.50)

�

Showing that the Rayleigh quotient actually has a local minimum at these
points (rather than a maximum or a stationary point) is a little more involved,
but can be done. The implications of this conclusion are quite deep, because
they imply that if we have an estimate for the eigenvector vi, i.e, we know that
v = vi + ε where ||ε|| is small, then a Taylor expansion of r near vi shows that

r(v) = r(vi + ε) = r(vi) + ε · ∇r +O(||ε||2) = λi +O(||ε||2) (4.51)

or in other words, if we have an estimate for an eigenvector vi that is accurate
to within O(ε), then we can get an estimate for its corresponding eigenvalue λi
that is accurate within O(ε)2! This seems almost too good to be true, but there
are no tricks here – it really works.

101

3.3.2. The Rayleigh Quotient iteration Based on what we just found, there
is a very simple way of accelerating the Inverse Iteration algorithm significantly,
noting that the Inverse Iteration can help converge to an eigenvector knowing
an eigenvalue, while calculation of the Rayleigh Quotient helps converge to an
eigenvalue given an eigenvector

Figure 1. The Rayleigh-Quotient Iteration

The algorithm itself is extremely simple:

Algorithm: Rayleigh Quotient Iteration algorithm

Initialize guess eigenvector v, with ||v|| = 1
Initialize λ = r(v)
do while ||r|| > desired accuracy

Solve (A− λI)y = v ! [One step of inverse iteration]
y = y

||y|| ! [Calculate new normalized vector]
r = y − v
λ = r(y) ! [Calculate new eigenvalue]
v = y ! [Replace old by new]

enddo

The convergence of this algorithm is phenomenally fast (see examples), and
the algorithm converges to the eigenvector that is the generally the closest in
direction to the initial guess v. A theorem (that we will not prove) establishes
the following:

Theorem: The Rayleigh Quotient Iteration converges to an eigenvec-
tor/eigenvalue pair (λi,vi) for almost any possible initial guess (i.e. for all initial
guesses except a set of measure 0). When it converges, then the convergence is
ultimately cubic in the sense that, after a certain initial number of iterations,

• ||v(n+1) − vi|| = O(||v(n) − vi||3)

• |λ(n+1) − λi| = O(|λ(n) − λi|3)

where λ(n) is the value of λ after n iterations, and v(n) is the vector v after n
iterations.

102

Furthermore, one can easily find many of the eigenvectors simply by trying
different initial vectors v on the unit sphere. In fact, one can work on an entire
basis at the same time using this algorithm, to converge to all of the eigenvectors
at once (see next lecture on how to do this).

4. The QR algorithm without shifts

See Chapter 28 of the textbook

In this section again we shall assume that the matrix A is m × m, real and
symmetric.

4.1. Simultaneous Iterations algorithm

Suppose we now want to construct an algorithm that can find all the eigenvectors
and eigenvalues of the matrix A at the same time. A naive approach, based on
the Power Iteration1, would simply be to apply the matrix A repeatedly to a
set of initially orthogonal vectors (chosen so to make sure they span the whole
space and are linearly independent), such as the column vectors of I for instance.
But that doesn’t quite work: to see why, let’s look at an example in 2D. Let x1

and x2 be the two initial vectors, which can both be written in the basis of the
eigenvectors v1 and v2:

x1 = α11v1 + α12v2

x2 = α21v1 + α22v2 (4.52)

After applying A once, we get

Ax1 = α11λ1v1 + α12λ2v2

Ax2 = α21λ1v1 + α22λ2v2 (4.53)

and after n times, when n is very large,

Anx1 = α11λ
n
1v1 + α12λ

n
2v2 ' α11λ

n
1v1 + . . .

Anx2 = α21λ
n
1v1 + α22λ

n
2v2 ' α21λ

n
1v1 + . . . (4.54)

so unfortunately both vectors turn into the direction of v1! However, if we re-
member that the set of eigenvectors of a real symmetric matrix is orthogonal,
we can find v2 simply by requiring that it should be orthogonal to v1, once the
latter is known.

In more than two dimensions it’s more complicated, since there is an infinite
number of ways of constructing an orthogonal basis whose first vector is known
(simply rotating the axes...). However, if we orthogonalize the basis of vectors
{xi} at every step, we effectively force x2 to be orthogonal to x1, so its evolu-
tion becomes dominated by the eigenvector with the next largest eigenvalue, v2,

1In the next lecture, we will improve on this to use the Rayleigh Quotient Iteration, but for
now, this is much easier to understand.

103

and similarly we force x3 to be orthogonal to both x1 and x2, so its evolution
becomes dominated by the eigenvector with the next largest eigenvalue, v3, etc..
As a result, the basis of vectors {xi} gradually rotates as a whole, axis by axis,
until it becomes the basis {vi}.

Conveniently, we have just learned a technique to orthogonalize a basis: this
is the QR decomposition, which takes a set of vectors (listed as column vectors
of a matrix A) and returns QR = A, in which the column vectors of Q form
an orthonormal basis whose first vector is aligned with a1, whose second vector
lies in the plane spanned by a1 and a2, etc.. We can then combine the QR algo-
rithm and the Power Iteration algorithm into what is called the Simultaneous
Iterations algorithm.

Algorithm: Simultaneous Iterations Algorithm:

Q = I ! [Initialize matrix]
do while error remains too large

Z = AQ ! [Multiply Q by A]
QR = Z ! [Compute QR factorization of Z, get new Q]

enddo

Note: The convergence condition while the error remains too large can be inter-
preted in different ways, but can for instance involve computing the eigenvalue
estimate at step n, and then again at step n+ 1, and requiring that the change
in these estimates between the two steps be smaller than a small number, to be
decided by the user.

After a sufficient number of iterations, this algorithm gradually transforms the
matrix Q into the matrix of eigenvectors V = [v1|v2| . . . |vm]. This then also
implies that

lim
n→∞

Q(n)TAQ(n) = VTAV =


λ1

λ2

. . .
λm

 ≡ Dλ (4.55)

where Q(n) is the Q matrix at step n.

Note that since we are orthogonalizing the matrix Z at every step (and not

An), it is not entirely obvious that Q(n) should necessarily contain an orthonor-
mal basis associated with AnI, which is what we were aiming to create. We can
however prove this easily by showing that

AnI = Q(n)R(n)R(n−1) . . .R(1) (4.56)

where R(n) is the R-factor in the QR factorization at step n.

104

Proof: We can easily prove this statement using recursion. Given the algo-
rithm above, at the first step, we have Q(1)R(1) = AI, which is in the correct
form.

Then, if we assume that, at step n− 1, An−1I = Q(n−1)R(n−1) . . .R(1), then

AnI = AAn−1I = AQ(n−1)R(n−1) . . .R(1) (4.57)

= Z(n)R(n−1) . . .R(1) = Q(n)R(n)R(n−1) . . .R(1) (4.58)

as required. Since the product of upper triangular matrices is another upper
triangular matrix, we have therefore shown that the expression

An = Q(n)R(n)R(n−1) . . .R(1) (4.59)

is in fact a QR factorization of An, and the factor Q(n) therefore contains a set
of orthonormal vectors forming a basis for the span of An, whose first element
is parallel to the first element of An. �

The convergence rate of this algorithm is similar to that of the basic Power
Iteration algorithm, and is therefore not that great. It is interesting to note,
however that it converges on the first and last eigenvalues at roughly the same
rate, but slower on intermediate eigenvalues. This result may be surprising at
first but will be clarified in the next lecture. We will also see the next lecture how
to improve convergence! In the meantime, we will now learn another algorithm
that is equivalent in all respects to the Simultaneous Iterations algorithm, but
looks a lot simpler (if that is even possible), and is remarkably elegant. This is
the QR algorithm (not to be mixed up with QR decompositions, which it uses).

4.2. The QR algorithm without shifts

The QR algorithm goes as follows:

Algorithm: QR algorithm:

do while error remains too large
QR = A ! [Compute QR factorization of A]
A = RQ ! [Replace A by product RQ]

enddo

It is insanely simple: just compute a QR factorization of A, then recompute
the product2 switching R and Q. Then repeat with the new matrix.

2Of course, creating R and Q and then multiplying them is not very efficient. It is best to
work only with the Householder vectors returned by the QR factorization scheme, see previous
lecture.

105

We are now about to prove that this algorithm is entirely equivalent to the
Simultaneous Iterations algorithm, and in particular, that

• This algorithm gradually transforms the initial matrix A into a diagonal
matrix containing the eigenvalues in its diagonal, ordered in norm from
largest to smallest

• The matrix Q of the QR factorization of A gradually transforms into the
matrix that contains all orthogonal and normalized eigenvectors of A

Proof: To help with the proof, we will label the matrices with superscripts
(n) to describe their values at the n-th iteration. Also, the matrices of the QR
factorization associated with the QR algorithms will be marked as Q and R, and
those associated with the SI algorithm will be marked as Q̌ and Ř. The initial
values are written with superscript (0). In these notations, the two algorithms
become:

• QR algorithm: A(0) = A, Q(n)R(n) = A(n−1) and A(n) = R(n)Q(n).

• SI algorithm: Q̌(0) = I, Z = AQ̌(n−1) and Q̌(n)Ř(n) = Z.

We now prove a number of intermediate results:

1. R(n) = Ř(n)

2. Q̌(n) = Q(1) . . .Q(n)

3. A(n) = Q̌(n)TAQ̌(n)

4. An = Q̌(n)R(n) . . .R(1) = Q(1) . . .Q(n)R(n) . . .R(1)

To do so, we use recursion, i.e., first verify that it is true at step 0, then show
that it is true at step (n) provided it is true at step (n− 1).

At step 0: Since Ř(0), Q̌(0) R(0) and Q(0) are not needed, we simply de-
fine them to be the identity. Then we trivially have proved 1., 2., 3. and 4.
(assuming that we do not evaluate the products in 2. and 4. since n = 0, and
merely assume the right-hand-sides are the identity.

At step (n), assuming 1., 2., 3. and 4. hold at all steps until (n− 1):

While analysing the SI algorithm we have already shown that

An = Q̌(n)Ř(n)Ř(n−1) . . . Ř(1) (4.60)

which, using 1. also implies An = Q̌(n)Ř(n)R(n−1) . . .R(1).

But from the SI algorithm, we have Q̌(n)Ř(n) = AQ̌(n−1), which from 3. can
be written as AQ̌(n−1) = Q̌(n−1)A(n−1) (recalling that the Q matrices are all
orthogonal), so

An = Q̌(n−1)A(n−1)R(n−1) . . .R(1)

= Q̌(n−1)Q(n)R(n)R(n−1) . . .R(1)

= Q(1) . . .Q(n−1)Q(n)R(n)R(n−1) . . .R(1) = Q̌(n)R(n)R(n−1) . . .R(1) (4.61)

106

where we got to the second line using the QR algorithm, and to the last one
using 4. at step n− 1. This expression then proves 4 at step n. Identifying the
two expressions for An, we also prove 1., that R(n) = Ř(n), and also 2., since

Q̌(n) = Q̌(n−1)Q(n) = Q(1) . . .Q(n−1)Q(n) (4.62)

To prove the last remaining expression, namely 3. at step n, we begin with

A(n) = R(n)Q(n) = Q(n)TA(n−1)Q(n) (4.63)

using both steps of the QR algorithm. Then we use Ř(n) = Q̌(n)TAQ̌(n−1)

from the SI algorithm, and R(n) = Q(n)TA(n−1) from the QR algorithm. Since
Ř(n) = R(n), we can then identify

Q̌(n)TAQ̌(n−1) = Q(n)TA(n−1) (4.64)

Using 2. this becomes

Q̌(n)TAQ̌(n) = Q(n)TA(n−1)Q(n) (4.65)

which we can now use in the earlier expression

A(n) = Q(n)TA(n−1)Q(n) = Q̌(n)TAQ̌(n) (4.66)

which proves 3.

Where does this leave us? Well, having proved that A(n) = Q̌(n)TAQ̌(n), and
because the matrices Q̌(n) from the SI algorithm are known to converge to the
eigenvector matrix V, we see that A(n) converges to the eigenvalue matrix Dλ.
This completes the required proof! �

It is important to realize that, as is, the QR algorithm does not return the
eigenvectors – merely the matrix Dλ. However if the eigenvectors are required,
then one can get them quite easily using the analogy with the SI algorithm
given in 2 – since Q̌(n) converges to the eigenvector matrix V, we merely have
to compute Q̌(n). To do so, we use the following algorithm instead:

Algorithm: QR algorithm, returning eigenvectors:

V = I
do while error remains too large

QR = A ! [Compute QR factorization of A]
A = RQ ! [Replace A by product RQ]
V = VQ ! [Update the eigenvector matrix]

enddo

107

Note that since the QR algorithm is equivalent to the SI algorithm, its con-
vergence is equally slow. In some extreme cases, the algorithm fails to converge
altogether, as in the following example.

Example: Let

A =

(
0 1
1 0

)
(4.67)

Trivially, it’s QR decomposition is

A = QR =

(
0 1
1 0

)(
1 0
0 1

)
(4.68)

since A is itself orthogonal. So reconstructing RQ for the next step, we get
RQ = IQ = A. And so forth. As a result, A never converges to its diago-
nal eigenvalue form. The latter is however well-defined: the matrix A has two
eigenvalues, 1 and −1, with two distinct eigenvectors, v1 = (1/

√
2, 1/
√

2)T and
v2 = (1/

√
2,−1/

√
2)T , so there is nothing particularly special about A. �

Aside from these extreme cases, however we may wonder whether it is possi-
ble to somehow create a simultaneous version of the Rayleigh Quotient iteration
to greatly speed up convergence. The answer is yes, and leads to the QR al-
gorithm with shifts, which (with a few added tricks) has become an industry
standard.

Example: To illustrate the QR iteration we will apply it to the real symmetric
matrix (an easy case!),

A =

 2.9766 0.3945 0.4198 1.1159
0.3945 2.7328 −0.3097 0.1129
0.4198 −0.3097 2.5675 0.6079
1.1159 0.1129 0.6079 1.7231

 , (4.69)

which has eigenvalues λ1 = 4, λ2 = 3, λ3 = 2, λ4 = 1. Computing its QR
factorization (e.g., using Householder or Gram-Schmidt factorizations) and then
forming the reverse product, we obtain

A(1) =

 3.7703 0.1745 0.5126 −0.3934
0.1745 2.7675 −0.3872 0.0539
0.5126 −0.3872 2.4019 −0.1241
−0.3934 0.0539 −0.1241 1.0603

 . (4.70)

Most of the off-diagonal entries are now smaller in magnitude and the diagonal
entries are somewhat closer to the eigenvalues. Continuing for a couple of more
iterations, we obtain

A(2) =

 3.9436 0.0143 0.3046 0.1038
0.0143 2.8737 −0.3362 −0.0285
0.3046 −0.3362 2.1785 0.0083
0.1038 −0.0285 0.0083 1.0042

 , (4.71)

108

and

A(3) =

 3.9832 −0.0356 0.1611 −0.0262
−0.0356 2.9421 −0.2432 0.0098

0.1611 −0.2432 2.0743 0.0047
−0.0262 0.0098 0.0047 1.0003

 . (4.72)

The off-diagonal entries are now fairly small, and the diagonal entries are quite
close to the eigenvalues. Only a few more iterations would be required to com-
pute the eigenvalues to the full accuracy shown. �

5. Improvements to the QR algorithm

See Chapter 29 of the textbook

In this section, once again, we shall assume that the matrix A is m ×m, real
and symmetric.

5.1. The QR algorithm with shifts

The convergence rate of the QR algorithm is, as discussed before, in principle
determined by the ratio of the first to next eigenvalues; if that ratio is large,
convergence is rapid, but if that ratio is close to one, it isn’t. As discussed
in the previous lecture, it is very tempting to try and use a trick similar to
the Rayleigh Quotient Iteration to accelerate convergence, but we run into two
problems when trying to do so:

• Starting from a single vector, using the Inverse Iteration with a well-chosen
shift µ given by the Rayleigh Quotient can easily home in on the eigen-
vector whose eigenvalue is closest to µ. However, if we did simultaneous
inverse iterations on a whole initial matrix I in the same way we did si-
multaneous power iterations on I in the last lecture, the same shift would
apply to the whole matrix, but only helps the convergence of a single vec-
tor. We may worry that it might in fact slow down the convergence for
the other vectors.

• In addition, while we proved that the QR algorithm is equivalent to per-
forming Simultaneous Power Iterations, there is no immediately apparent
way of generalizing it to be able to do Simultaneous Inverse Iterations
(which is what would be needed here).

By some odd stroke of luck, however, both problems can be solved at the same
time with the QR algorithm with shifts.

The principle behind the QR algorithm with shifts derives from a very im-
portant property the Simultaneous Iterations Algorithm (which, as you recall,
is equivalent to the QR algorithm).

109

Theorem: The Simultaneous Iterations Algorithm applied to an initial identity
matrix I, it is equivalent to an unshifted simultaneous inverse power iteration
(i.e. a simultaneous power iteration of A−1) on a reverse permutation of the
identity matrix P.

The matrix P is simply a back-to-front identity matrix (shown here in 4-
dimensional space for instance)

P =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (4.73)

To see why this is the case recall that the SI algorithm writes An as

AnI = Q̌(n)R where R = Ř(n) . . . Ř(1) (4.74)

showing that Q̌(n) is the orthogonalized matrix An, and the first column vector of
Q̌(n) is aligned with the first column vector of An. That vector, by construction,
gradually converges to the first eigenvector v1.

However, we can also take the inverse of this expression, and get

(An)−1 = (A−1)n = (Q̌(n)R)−1 = R−1Q̌(n)T (4.75)

Furthermore, remembering that A is symmetric, we know that its inverse is too
(this is very easy to prove), so

(A−1)n = R−1Q̌(n)T = (R−1Q̌(n)T)T = Q̌(n)R−T (4.76)

Now the matrix R−T is not upper triangular – it is in fact lower triangular, but
here is where the matrix P comes in. Noting that P2 = I, we have

(A−1)nP = [Q̌(n)P][PR−TP] (4.77)

This time, PR−TP is upper triangular (think of flipping both the columns and
the row of a lower triangular matrix with P), so what we have here is an effective
QR decomposition of (A−1)nP. �

This shows that the matrix Q̌(n)P contains the orthogonalized basis of (A−1)nP
in its column vectors, and that its first vector, which is actually the last column
of Q̌(n), is aligned with the first vector of (A−1)nP. Since (A−1)nP is a si-
multaneous inverse iteration, its first vector picks up the direction of the largest
eigenvalue of A−1. Since the eigenvalues of A−1 are 1/λi (if those of A are λi),
then the largest eigenvalue of A−1 is 1/λm. The simultaneous inverse iteration
acting on P will therefore promote the eigenvector vm. This ultimately shows
that the SI algorithm not only preferentially converges the first column of Q̌(n)

to the first eigenvector v1, it also preferentially converges the last column of
Q̌(n) into the last eigenvector vm, at the same time!. This now explains why the
first and last eigenvalue/eigenvector pairs appear to converge faster than all the

110

other ones.

The upshot of realizing this is that we can now shift the inverse iteration on
the last column vector to accelerate it greatly, without affecting the convergence
of the first eigenvector too much. This leads to the QR algorithm with shifts!

Algorithm: QR algorithm with shift (part 1):

do while error remains too large
µ = amm ! [Select shift]
QR = A− µI ! [Compute QR factorization of A− µI]
A = RQ + µI ! [Replace A by RQ + µI]

enddo

Note that selecting µ = amm effectively uses the Rayleigh Quotient shift, since
amm = qTmAqm converges to the last eigenvalue (see the last lecture). This
algorithm, therefore, performs one QR factorization of the shifted matrix A,
effectively corresponding to one step of shifted inverse simultaneous power iter-
ation, and then reconstructs A as RQ + µI, thereby canceling the shift. This
last step is crucial; otherwise, the matrix A would not converge to Dλ (recalling
that the eigenvalues of the shifted matrix are not the same as the eigenvalues of
the original matrix).

Reconstructing the eigenvectors, in this case, is also not very difficult, because
we still have that Q̌(n) = Q(1) . . .Q(n) converges to the eigenvector matrix V,
even though this time Q̌(n) denotes Q at the n−th step of the shifted SI algo-
rithm, and Q(n) denotes Q at the n−th step of the shifted QR algorithm.3 We
can therefore proceed exactly as before.

Finally, it is worth noting that as in the case of the basic QR algorithm, there
are some input matrices for which even the shifted algorithm does not converge.
In fact, the matrix A discussed in the previous lecture has exactly the same
problem with or without shift. For this reason, other shifting strategies are
sometimes used (e.g. the Wilkinson shift, discussed in Chapter 29, or multiple
shift strategies, which more easily generalize to non-symmetric matrices, etc..).

Example: To illustrate the QR algorithm with shifts, we repeat the previous

example with the shift µk = a
(k−1)
nn at each iteration.

3The proof of this statement is just as nasty as the proof of the equivalence between non-shifted
QR and SI, so we will not attempt to do it here.

111

Thus, with

A(0) =

 2.9766 0.3945 0.4198 1.1159
0.3945 2.7328 −0.3097 0.1129
0.4198 −0.3097 2.5675 0.6079
1.1159 0.1129 0.6079 1.7231

 , (4.78)

we take µ1 = 1.7321 as shift for the first iteration. Computing the QR factoriza-
tion of the resulting shifted matrix Q(1)R(1) = A(0) − µ1I, forming the reverse
product, R(1)Q(1), and then adding back to the shift, we get

A(1) =

 3.8811 −0.0178 0.2355 0.5065
−0.0178 2.9528 −0.2134 −0.1602

0.2355 −0.2134 2.0404 −0.0951
0.5065 −0.1602 −0.0951 1.1253

 , (4.79)

which is noticeably closer to diagonal form and to the correct eigenvalues then
after one iteration of the unshifted algorithm. Our next shift is then µ2 = 1.1253,
which gives

A(2) =

 3.9946 −0.0606 0.0499 0.0233
−0.0606 2.9964 −0.0882 −0.0103

0.0499 −0.0882 2.0081 −0.0252
0.0223 −0.0103 −0.0252 1.0009

 . (4.80)

The next shift, µ3 = 1.0009, is very close to an eigenvalue and gives

A(3) =

 3.9980 −0.0426 0.0165 0.0000
−0.0426 3.0000 −0.0433 0.0000

0.0165 −0.0433 2.0020 0.0000
0.0000 0.0000 0.0000 1.0000

 . (4.81)

Notice that the final iterated matrix A(3) is very close to diagonal form. As
expected for inverse iteration with a shift close to an eigenvalue, the smallest
eigenvalue has been determined to the full accuracy shown. The last row of A(3)

is all zeros except for the diagonal one, so we can reduce the problem to the
leading 3× 3 submatrix for further iterations. Because the diagonal entries are
already very close to the eigenvalues, only one or two additional iterations will
be required to obtain full accuracy for the remaining eigenvaules. �

5.2. Deflation

One of the dirty secrets of the textbook is about what happens if you implement
the QR with shifts as is. As it turns out, it’s not very pretty and it’s easy to see
why. As the last eigenvalue converges extremely fast thanks to the shifts in the
inverse iteration, the last row and last column of the matrix A rapidly become
(ε1, ε2, . . . , εm−1, λm + εm) where all the εi are order machine accuracy. With
the shift in place, we then construct the matrix A− (λm + εm)I whose last row
and last column are now entirely equal to the vector 0 within machine precision!
The matrix A − λmI is therefore singular, and this affects the precision of the

112

QR decomposition if we continue to work with it.

A nice solution to the problem is to stop working with the last eigenvalue/eigenvector
pair as soon as we are happy with its convergence. This is the principle behind
deflation – once an eigenvalue has converged, simply continue to work with the
remaining submatrix. In other words, as soon as

A ∼

 ε
B ε

ε
ε ε ε λm

 (4.82)

continue applying the shifted QR algorithm to the sub-matrix B, where the shift
is now the last element of B. Once done with B, copy its results back into A.
Of course, this technique can be applied recursively, deflating B when its last
eigenvalue has converged, and so forth.

Here is a shifted QR algorithm with basic deflation from the bottom up.

Algorithm: QR algorithm with shift and deflation:

do j = m down to 2
Allocate B, Q, R of size j × j.
B = A(1 : j, 1 : j)
do while error on λj remains too large

µ = bjj ! [Select shift]
QR = B− µI ! [Compute QR factorization of B− µI]
B = RQ + µI ! [Replace B by RQ + µI]
A(1 : j, 1 : j) = B ! [Replace B into A]

enddo
Deallocate B, Q, R

enddo

Working on copies of the matrix A in the inner loop guarantees the columns of
A outside of B are left untouched. We then copy back B into A at every iter-
ation, just to make sure A is kept updated at all times, so it is indeed updated
when the loop exits. While this makes the algorithm easy to read, it is not very
memory efficient, however. Other techniques can be used to do the same thing
while working directly on A instead.

Recomputing the eigenvectors in this case is a little complicated, unfortunately,
so we will leave this as a homework4.

4Just kidding! If you need to compute the eigenvectors, use a commercial package.

113

5.3. The Hessenberg form

A final refinement of the QR algorithm consists in doing some preliminary work
on the matrix A prior to the application of the QR algorithm, so that each QR
decomposition and reconstruction is much cheaper to do. This involves putting
A in the so-called Hessenberg form.

Putting a matrix A in Hessenberg form consists in finding an orthogonal
transformation P such that A = PAHPT , where AH is of the form

AH =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0
. . . ∗ ∗

...
...

. . . ∗ ∗ ∗
0 0 0 0 ∗ ∗


(4.83)

that is, a matrix whose coefficient ij is 0 if i > j + 1. Note that we are running
out of letters here, so P is just a standard orthogonal matrix that has nothing to
do with either a projection or with the reverse identity matrix introduced earlier.

Since A = PAHPT is a similarity transformation, the eigenvalues of AH are
the same as those of the original matrix. The eigenvectors are different, but
only in as much as they have gone through a change of base, which is very easy
to reverse. As a result, finding the eigenvalues/eigenvectors of A is almost the
same as finding the eigenvalues/eigenvectors of AH.

What is the advantage of working with AH instead of A? As it turns out,
the QR algorithm applied to AH can be made enormously faster than the QR
algorithm applied to A. To understand why, first note that the Hessenberg form
is preserved by the QR algorithm.

Proof: Let’s first look at the QR decomposition, and assume we can write
AH = QR. Our first claim is that Q is also in Hessenberg form. To show this,
note that

(AH)ij =
m∑
k=1

qikrkj =

j∑
k=1

qikrkj (4.84)

because R is upper triangular. Then, the only way to guarantee that (AH)ij = 0
if i > j + 1 is to have qik = 0 if i > k + 1.

Next, we have to show that the reconstruction RQ is also in Hessenberg form.
This is easy, since

(RQ)ij =

m∑
k=1

rikqkj =

m∑
k=i+1

rikqkj (4.85)

Since Q is in Hessenberg form, then qkj = 0 if k > j + 1 and so (RQ)ij = 0 if
i > j + 1, and is therefore also in Hessenberg form. �

114

An even more interesting result is that the Hessenberg form of a symmetric
matrix is itself symmetric (this is very easy to show), and must therefore be
tridiagonal! Based on the result above, we therefore also know that the QR
algorithm applied to a tridiagonal matrix returns a tridiagonal matrix. Since
nearly all entries of a tridiagonal matrix are known zeros, they do not need to be
computed, so the speed of each iteration of the QR algorithm can be increased
enormously!

All of this leaves just one question – how to put A into Hessenberg form in
the first place? As it turns out, it’s very easy to do using the tools we have
learned so far. Recalling that the matrix P has to be orthogonal, a good way to
proceed is to apply successive orthogonal transformations to A, to zero out the
elements below the subdiagonal, until A is in Hessenberg form. We know how
to do this – we just have to successively apply Householder transformations Hj

where each of the Hj are created to zero out sub-subdiagonal elements instead
of subdiagonal ones (see below on how to do that):

A→ Hm−2 . . .H1A ≡ PTA (4.86)

Because we want to create a similarity transformation, however, we have to
apply P on both sides of A, which implies

AH = PTAP

= (Hm−2 . . .H1)A(Hm−2 . . .H1)T

= (Hm−2 . . .H1)A(HT
1 . . .H

T
m−2)

= (Hm−2 . . .H1)A(H1 . . .Hm−2) (4.87)

since each Hj is symmetric. One may therefore worry that applying Hj to the
right of A at each iteration may repopulate the elements we just zeroed out by
applying Hj to the left! As it turns out, this does not happen, because of the
form of the matrix Hj .

Indeed, by analogy with what we have learned so far, to zero out the sub-
subdiagonals in the j−th column, we first compute

sj = sign(aj+1,j)

√√√√ m∑
k=j+1

a2
kj (4.88)

Then create the Householder vector vj = (0, . . . , 0, aj+1,j + sj , aj+2,j , . . . , amj)
T

and normalize it, and finally, create Hj = I−2vjv
T
j . By construction, therefore,

the first j elements of vj are all zeros, which means that the first j rows and
columns of Hj are equal to the first j rows and columns of the identity matrix.
Because of this, applying Hj to the left of A only affects rows j+ 1 and up, and
applying it to the right only affects columns j + 1 and up – leaving the ones we
have already worked on as they are!

115

We therefore have the following algorithm for reduction to Hessenberg form:

Algorithm: Reduction to Hessenberg form of a square matrix A:

do j = 1 to m− 2
![loop over columns]

sj = sign(aj+1,j)
√∑m

i=j+1 a
2
ij

! [compute signed norm]
vj = [0, · · · 0, aj+1,j + sj , aj+2,j , · · · , amj]T
vj = vj/||vj ||
! [compute Householder vector and normalize it]
A = A− 2vjv

T
j A ![Update A from the left]

A = A− 2Avjv
T
j ![Update A from the right]

enddo

As expected, this looks very much like the Householder algorithm for QR decom-
position, with only 2 modifications: (1) starting from the subdiagonal element
aj+1,j in the sum involved in sj , and in the vector vj , instead of the diagonal
element ajj , and (2) applying Hj from the right.

On exit, A should be in Hessenberg form if A is any normal nonsingular matrix,
and in tridiagonal form if A is symmetric. Note that this algorithm does not
return P. This is fine if we do not want to compute the eigenvectors, but if
we do, then we have to create P on the side and save it. As usual, there is
a simple way (initialize P = I, then add the line P = HjP at the end of the
algorithm), and an efficient way (in which the sub-subdiagonal components of
the Householder vectors are stored in the place of the zeros, and the subdiagonal
elements of these vectors are returned in a separate array).

5.4. Summary

For real symmetric matrices, the combination of (1) reduction to Hessenberg
form, (2) a QR algorithm taylor-made for tridiagonal matrices, (3) shifts and
(4) deflation, transforms the basic QR algorithm into a blindly fast one, which
is now the industry standard. The overall operation count is of order 2

3m
3 mul-

tiplications, which is even less than computing the product of two matrices!

Because the algorithm only makes use of basic Householder transformations and
simple matrix multiplications, it has been shown to be backward-stable when it
converges. The computed eigenvalues have been shown to be accurate within a
factor that is order machine accuracy times the norm of A:

|λ̃j − λj | = O(||A||εmach) (4.89)

116

where λ̃j is the answer returned by the algorithm.

All that is left to do, now, is to see how one may generalize some of these
algorithms to non-symmetric matrices!

6. Beyond real symmetric matrices

See Chapter 7 of Golub and Van Loan’s Matrix Computations
The general case where matrices are neither real nor symmetric is much

more complicated than what we have seen so far. Consider for instance what
happens when the matrix A is real, but not symmetric. None of the nice prop-
erties of real symmetric matrices apply. In particular

• The eigenvalues may not be real (even though A is real)

• The eigenvectors may not be orthogonal

• Some eigenvalues could be defective so the basis of eigenvectors is not
necessarily a complete basis.

and so forth. As a result, the QR algorithm no longer turns A into the eigen-
value matrix Dλ. However, that does not mean the QR algorithm is now useless.
On the contrary, as we shall see below.

Note that this final section of the Eigenvalue chapter is not meant to be rig-
orous or comprehensive. In particular, we will not prove anything, nor is it ex-
pected that you should be able to code any of the algorithms described. Instead,
this is the point at which we shall start relying entirely on more sophisticated
commercial algorithms to give us the desired answers.

6.1. The complex QR algorithm for Hermitian matrices

A very easy extension of the QR algorithm can be made for Hermitian matrices.
Recall that a Hermitian matrix is such that

A = A∗ (4.90)

where A∗ is the Hermitian conjugate of A (i.e. the complex conjugate of the
transpose of A). Relevant properties of Hermitian matrices are

• Their eigenvalues are real, and non-defective

• The eigenvectors are orthogonal (or can be made orthogonal) and form a
basis for the whole space

• A Hermitian matrix can be diagonalized as Dλ = U∗AU where U is a
unitary matrix.

The last step tells us that, as long as we can find the right unitary matrix
U, we can find the (real) eigenvalues and (complex) eigenvectors of A. As it
turn out, it is possible to generalize the QR algorithm quite trivially to find U

117

and therefore Dλ, simply by using a complex version of the QR decomposition
algorithm that writes a complex matrix

A = UR (4.91)

where U is unitary. Computing this complex QR factorization is also done using
a relatively simple generalization of the standard QR algorithm that handles
complex-valued vectors.

6.2. The Schur factorization for non-Hermitian matrices, and its re-
lationship with the complex QR decomposition

We have just seen that for Hermitian matrices (or the special case of real sym-
metric matrices), there exist a factorization of A such that

Dλ = V∗AV (or Dλ = VTAV in the real case) (4.92)

where V is the unitary (orthogonal) eigenvector matrix, and Dλ is the eigenvalue
matrix. This type of factorization is called an eigenvalue-revealing factor-
ization, and the purpose of the QR algorithm we just learned was precisely to
compute Dλ by successive iterations on A.

As it turns out, while this factorization is not always possible for non real-
symmetric matrices, there is another eigenvalue-revealing factorization that ex-
ists in the general case; this is the Schur factorization.

Theorem: Let A be an m × m complex matrix. Then there always exists a
unitary matrix U such that

T = U∗AU (4.93)

where T is upper triangular.

Since U∗ = U−1, this is a similarity transformation so A and T have
the same eigenvalues. Furthermore, since the eigenvalues of an upper triangu-
lar matrix are its diagonal elements, we see that the Schur factorization is an
eigenvalue-revealing factorization, i.e. it reveals the eigenvalues of A as the di-
agonal elements of T. Note that if a matrix A is diagonalizable, then T = Dλ,
so the Schur form can be viewed as a generalization of the concept of diago-
nalization for matrices that are not diagonalizable (i.e. when the eigenvectors
are not orthogonal, or when the basis of eigenvectors is not complete). What
is crucial is that this decomposition always exists, even if the matrix is defective.

We will not prove this theorem in general, although if you are interested in
the proof, you can find it in Golub & Van Loan (the proof is based on a recur-
sive algorithm). However, the case of a simple non-defective matrix is quite easy
to prove. Indeed, if A is non-defective, then its eigenvectors form a basis for all
space, and in that basis, A is diagonalizable. In other words,

Dλ = V−1AV (4.94)

118

where V is the eigenvector matrix (not necessarily unitary). Let us now con-
struct the complex QR decomposition of V as V = UR, where U is unitary.
Then

Dλ = (UR)−1AUR = R−1U∗AUR⇒ RDλR
−1 = U∗AU (4.95)

The multiplication of Dλ by an upper triangular matrix returns an upper tri-
angular one. In addition, R−1 is also upper triangular, and the product of two
upper triangular matrices is also upper triangular. As a result RDλR

−1 is upper
triangular, so, we have the desired decomposition

T = U∗AU (4.96)

As it turns out, it can be shown that the complex QR algorithm (i.e. the
QR algorithm that uses the complex QR decomposition), when applied to a
non-Hermitian matrix, gradually transforms the matrix A into its Schur form5!
The situation is therefore a priori very simple – just apply the algorithm repeat-
edly to the matrix A, and the (complex) eigenvalues shall be revealed on the
diagonal!

6.3. The LAPACK routines for eigenvalue searches

While the theory is, in theory, very simple, actually getting these algorithms to
work robustly is quite complicated, and at this point, it is best to leave this to
specialists. MATLAB, for instance, has a large number of built-in routines for
eigenvalue searches. In Fortran/C/C++, the standard routines are called BLAS
and LAPACK. BLAS stands for Basic Linear Algebra Subprograms and
contains a whole library of subroutines for Linear Algebra. LAPACK stands for
Linear Algebra PACKage, and is a higher-level series of routines that use the
BLAS to solve more advanced problems such as solving linear equations, finding
eigenvalues, etc. See http://www.netlib.org/lapack/#_presentation/
for more general information, and http://www.netlib.org/lapack/lug/
for a detailed User Guide.

Using LAPACK libraries can be challenging; in fact, just finding out what
each routine does is no mean feat, as their documentation assumes that the
user has serious knowledge of linear algebra. Also, LAPACK has a number of
different levels of routines, which can be confusing at first. They are split into

• Driver routines, each of which solves a complete problem (e.g. a system of
linear equations, an eigenvalue problem, etc.)

• Basic computational routines, which perform standard tasks such as Cholesky
decomposition, QR decomposition, etc..

• Auxiliary routines that perform low-level computations that are often
needed by the driver or basic computational routines. These are usually
done by the BLAS, and are highly optimized.

5This statement, once again, will not be proved.

119

Generally speaking, you will rarely have to directly use the auxiliary routines,
you may occasionally have to use the basic computational routines, but most
likely will make use of the driver routines.

LAPACK routines are nearly always available for both single and double-
precision, real or complex problems, and follow a simple naming scheme accord-
ingly: the first letter of the routine tells you what kind of variables you are
working with, and the rest of the name is the actual name of the routine.

• S is for real, single precision

• D is for real, double precision

• C is for complex, single precision

• Z is for complex, double precision

The most useful section of the User Guide is the one that describes what
each routine does: http://www.netlib.org/lapack/lug/node25.html
For instance, suppose we want to find out how to compute the eigenvalues of a
real symmetric matrix, we would go to the relevant section (Symmetric Eigen-
problems), which then contains a description of the various driver routines that
can be used. As you can see, there are a number of possibilities, which are all
summarized in their table 2.5 (follow the link). Once you have the name of a
routine, say for instance DSYEV (for Double-precision SYmmetric EigenValue
problem), you can search for it online, and end up on the NETLIB page which
has an in-depth description of what this particular routine does, what arguments
it takes, and what arguments it returns. It also contains a diagram that explains
what dependencies this routine has. You should definitely spend a little time
marveling at the sophistication added to the basic algorithm to ensure that they
are indeed returning robust answers for all possible input matrices!

Chapter 5

Singular Value Decomposition

We now reach an important Chapter in this course concerned with the Singular
Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one
of the most powerful non-trivial tools of Numerical Linear Algebra that is used
for a vast range of applications, from image compression, to Least Square fitting,
and generally speaking many forms of big-data analysis, as we shall see below.

We will first learn more about the SVD, discuss briefly how one may com-
pute it, then see some examples. By contrast with other Chapters, here we
will not focus so much on algorithmic development (which is a very complicated
topic) but more on understanding the theoretical and practical aspects of the
SVD.

1. What is the SVD?

See Chapter 4 of the textbook

1.1. General ideas

As we saw in Chapter 1, it is possible, from any matrix A of size m × n, to
define singular values σi and left and right singular vectors ui and vi so that

Avi = σiui (5.1)

where ui are the normalized m × 1 vectors parallel to the principal axes of the
hyperellipse formed by the image of the unit ball via application of A, σi > 0
are the lengths of these principal axes, and vi are the pre-images of ui, and of
size n×1. If r = rank(A), then there will be r such principal axes, and therefore
r non-zero singular values.

Let us now re-write this as the matrix operation

AV = UΣ = A

 ∣∣ ∣∣ ∣∣
v1 v2 . . . vr∣∣ ∣∣ ∣∣

 =

 ∣∣ ∣∣ ∣∣
u1 u2 . . . ur∣∣ ∣∣ ∣∣



σ1

σ2

. . .
σr


(5.2)

where A is m× n, V is n× r, U is m× r and Σ is r × r.
120

121

A very non-trivial result (that we prove below) is that both U and V are
unitary matrices (orthogonal, if A is real). While it may seem obvious that
U should be unitary since it is formed by the principal axes of the hyperellipse,
note that we have not proved yet that the image of the unit ball is always a
hyperellipse. Furthermore, there is no obvious reason why the pre-images vi of
the ui vectors should themselves be orthogonal, even if the ui are. Nevertheless,
assuming this is indeed the case, then we have

U∗AV = Σ or equivalently A = UΣV∗ (5.3)

The first of these two expressions reveals something that looks a lot like a
diagonalization of A in its own subspace, and is clearly an extension of the more
commonly known expression

V−1AV = Dλ (5.4)

when A is diagonalizable (i.e. square, and non-defective) and V is the basis of
its eigenvectors. Crucially, however, we will show that writing U∗AV = Σ can
be done for any matrix A, even defective ones, and even singular ones.

The second of these expression writes A as a factorization between inter-
esting matrices – here, two orthogonal ones and one diagonal, positive definite
one, and is directly related to the so-called reduced and full singular value de-
compositions of A. The distinction between reduced SVD and full SVD here is
very similar to the distinction we made between reduced QR decomposition and
full QR decomposition in Chapter 3.

1.2. The reduced SVD

To construct the reduced singular value decomposition of A, we add the
normalized vectors vr+1, . . .vn to V, choosing them carefully in such a way
as to be orthogonal to one another and to all the already-existing ones. This
transforms V into a square orthogonal matrix, whose column vectors form a
complete basis for the space of vectors of length n. Having done that, we then
need to

• expand Σ to size n×n, where the added rows and columns are identically
zero

• add the vectors ur+1, . . .un to U. These vectors must be normalized,
orthogonal to one another, and to the existing ones. Note that these new
vectors lie outside of the range of A, by definition.

The new factorization of A then becomes A = ÛΣ̂V̂∗, and more precisely

A =

 ∣∣ ∣∣ ∣∣ ∣∣
u1 . . . ur ur+1 . . . un∣∣ ∣∣ ∣∣ ∣∣




σ1

. . .
σr

0
. . .

0





− v∗1 −
...

− v∗r −
− v∗r+1 −

...
− v∗n −


(5.5)

122

Recalling that this can also be written AV̂ = ÛΣ̂, we find that the added
v vectors (in red) satisfy Avi = 0ui, revealing them to span the nullspace of A.

With this construction, V̂ and Σ̂ have size n× n, and Û has size m× n. .

1.3. The full SVD

Just as in the QR case, we can then also define a full SVD, by completing the
basis formed by the orthogonal vectors ui into full basis for the space of m× 1
vectors. We then continue to add vectors to U, normalized, orthogonal to one
another and orthogonal to the previous ones, as usual. We also continue to
pad Σ with more rows containing only zeros. The matrix V on the other hand
remains unchanged. This yields

A = UΣV∗ (5.6)

where, this time, U is an m×m matrix, V is an n×n matrix, and Σ is an m×n
diagonal matrix, with zeros everywhere else. In this sense, U and V are square
unitary matrices, but Σ has the same shape as the original matrix A. As in the
case of the reduced vs. full QR decompositions, the full SVD naturally contains
the reduced SVD in its columns and rows.

1.4. The existence of the SVD

We now come to the tricky part, namely demonstrating that a SVD exists for
all matrices. Note that the theorem applies to the full SVD, but since the re-
duced SVD is contained in the latter, it de-facto also proves the existence of the
reduced SVD.

Theorem: (Singular Value Decomposition) Let A be an m × n matrix. Then
there exist two unitary matrices U (of size m ×m) and V (of size n × n) such
that

U∗AV = Σ, (5.7)

where Σ is an m×n diagonal matrix whose p = min(m,n) entries are σ1 ≥ σ2 ≥
. . . σp ≥ 0. If rank(A) = r, then there will be exactly r non-zero σi, and all the
other ones are zero.

Idea behind the proof: The proof is inductive but unfortunately not very
constructive. The idea is to work singular value by singular value. Let’s begin
with the first singular value of A, which we proved a long time ago to satisfy

σ1 = ||A||2 (5.8)

Because of the way ||A||2 is constructed, we know that there exists1 a unit vector
x that satisfies ||Ax||2 = σ1; let that vector be v1, and let u1 be the unit vector
defined such that Av1 = σ1u1. Let’s then construct a unitary matrix U1 whose
first column is u1 (randomly pick u2, ... um normalized and orthogonal to one

1Note that this is where the proof lets us down a little since although we know x must exist, it
doesn’t tell us how to find it.

123

another and to u1), and another unitary matrix V1 whose first column is v1

(randomly pick v2, ... vn normalized orthogonal to one another and to v1).
Then let

A1 = U∗1AV1 (5.9)

Since Av1 = σ1u1 and since u∗iu1 = δi1 (because U is unitary), it is easy to
show that A1 takes the form

A1 =

(
σ1 w∗

0 B

)
(5.10)

where B is an m−1×n−1 matrix, w is an n−1 long vector, and 0 is an m−1
long vector full of zeros. The key to the proof is to show that w is also zero.

To do so, first note that because U and V are unitary matrices, ||A1||2 =
||A||2 (see Lecture 2). Next, let’s consider the effect of A1 on the column vector
s = (σ1,w

T)T .

A1s = A1

(
σ1

w

)
=

(
σ2

1 + w∗w
Bw

)
(5.11)

On the one hand, because σ1 is the norm of A1, we know that

||A1s||2 ≤ σ1||s||2 = σ1

√
σ2

1 + w∗w (5.12)

by definition of the norm. On the other hand, we also know that

||A1s||2 =
√

(σ2
1 + w∗w)2 + ||Bw||22 ≥ σ

2
1 + w∗w (5.13)

Putting these two bounds together, we have

σ1

√
σ2

1 + w∗w ≥ σ2
1 + w∗w (5.14)

which can only be true if w = 0. In other words, any unitary matrices U1 and
V1 constructed with u1 and v1 as their fist column vectors result in

A1 = U∗1AV1 =

(
σ1 0
0 B

)
(5.15)

If we continue the process for B, pick its first singular value (which we call σ2),
identify the vectors u2 and v2, and construct unitary matrices U2 and V2 based
on them, we can then write

B2 = Û∗2BV̂2 =

(
σ2 0
0 C

)
(5.16)

which implies that

U∗2U
∗
1AV1V2 =

(
σ1 0
0 B2

)
=

σ1 0 0
0 σ2 0
0 0 C

 (5.17)

124

where

U2 =

(
1 0

0 Û2

)
and V2 =

(
1 0

0 V̂2

)
(5.18)

The procedure can be continued over and over again, to reveal, one by one, all
the singular values of A.

Two things are left to discuss. One, is the fact that U2 and V2 constructed
as above are indeed unitary. This is the case, because by construction everything
related to B is orthogonal to v1 and u1 (respectively). And since the product
of unitary matrices is also unitary, the construction gradually constructs the
singular value decomposition of A with

U = U1U2 . . .Ur and V = V1V2 . . .Vr (5.19)

It is worth noting that, because of the way we constructed U and V, the first
column of U contains u1, the second column contains u2, etc.. , and similarly
for V, the first column contains v1, the second v2, etc, as we expect from the
original description of the SVD.

Second, is what to do when the next singular value happens to be zero.
Well, the simple answer is nothing, because only the zero matrix can have a
singular value that is identically 0. And since the matrix Ur and Vr were con-
structed with completed bases already, all the work has already been done! �

It is worth noting that a singular value decomposition is not unique. For in-
stance, if two singular values are the same, then one can easily switch the order
in which the vectors corresponding to that value appear in U and V to get two
different SVDs. Also, note how one can easily switch the signs of both ui and
vi at the same time, and therefore get another pair of matrices U′ and V′ that
also satisfies A = U′ΣV′∗.

1.5. Simple / trivial examples of SVD.

Here are a few matrices where the SVD can easily be found by inspection.

Example 1: In this case, A is nearly in the right form, but recall that the
diagonal matrix in the SVD needs to have only positive entries. This is easily
fixed as (

3 0
0 −2

)
=

(
1 0
0 1

)(
3 0
0 2

)(
1 0
0 −1

)
(5.20)

Other decomposition can be created by changing the signs of u1 and v1, and/or
u2 and v2.

Example 2: In this case, A is again nearly in the right form, but the or-
der of the singular values is wrong. This is easily fixed by doing a permutation
of the rows and columns, as in(

2 0
0 3

)
=

(
0 1
1 0

)(
3 0
0 2

)(
0 1
1 0

)
(5.21)

Again, other decomposition can be created by changing the signs of u1 and v1,
and/or u2 and v2.

125

Example 3: In this case, A is again nearly in the right form, and would be if
the columns were switched. This can be done by multiplying A from the right
by a 2 × 2 permutation matrix, which ends up being V∗. There is nothing left
to do from the left, so we simply take U to be the identity matrix.0 2

0 0
0 0

 =

1 0 0
0 1 0
0 0 1

2 0
0 0
0 0

(0 1
1 0

)
(5.22)

And so forth.. More examples can be found in the textbook, and will be set as
project questions.

2. Properties of the SVD

See Chapter 5 of the textbook

The SVD has a number of important properties that will turn out to be very
useful. The first few we will just state; many of them we have already seen:

• The SVD of a real matrix has real (and therefore orthogonal) U, V

• The number of non-zero singular values is equal to rank(A).

• The vectors u1 . . . ur span the range of A, while the vectors vr+1 . . . vn
span the nullspace of A.

• ||A||2 = σ1 and ||A||F =
√
σ2

1 + · · ·+ σ2
r . (To prove the second, simply

recall that the Frobenius norm of the product of A with a unitary matrix
is equal to the Frobenius norm of A (see Lecture 2)).

• If A is a square matrix m×m, then |det A| = σ1σ2 . . . σm (To prove this,
first remember or prove that the determinant of a unitary matrix is ±1).

Another very interesting property of the SVD comes from realizing that, if A is
square and is non-singular, then the inverse of A satisfies

A−1 = (UΣV∗)−1 = VΣ−1U∗ (5.23)

which is nearly in SVD form. Indeed,

Σ−1 =


1
σ1

1
σ2

. . .
1
σm

 (5.24)

so the elements are not in the right order. This is easy to fix, however, simply
by doing a permutation of the rows and columns on either side:

A−1 = (VP)(PΣ−1P)(PU∗) (5.25)

126

where P is the same reverse identity matrix we introduced in Lecture 11, which
satisfies PP = I. Since P is merely a permutation, both VP and PU∗ are
unitary matrices since V and U are. Hence, the ordered singular values of A−1

are (σ−1
m , . . . , σ−1

1). This then also proves one of the results we have learned a
while back, that ||A−1||2 = σ−1

m , a result we then used to show that the condition
number of A is

cond(A) = ||A−1||2||A||2 =
σ1

σm
(5.26)

Next, let us construct the matrix A∗A, in terms of the SVD of A. We have

A∗A = (UΣV∗)∗(UΣV∗) = VΣ∗U∗UΣV∗ (5.27)

= VΣ∗ΣV∗ = V


σ2

1
σ2

2
. . .

σ2
n

V∗ (5.28)

This is effectively a diagonalization of the matrix A∗A, which shows that the
non-zero eigenvalues of A∗A are the square of the nonzero singular
values of A!

Finally if A is Hermitian (A = A∗), then we know that its eigenvalue/eigenvector
decomposition is

A = Q∗DλQ (5.29)

where Q is the matrix whose column vectors are the eigenvectors of A. Vector
by vector, this implies Aqi = λiqi.

This actually looks very much like a singular value decomposition, except
for the fact that some of the λi can be negative while σi must be positive.
However by noting that you can write λi = sign(λi)σi, then

Aqi = λiqi = sign(λi)σiqi = σiui (5.30)

where ui = sign(λi)qi. We can therefore use the qi to find the left and right
singular vectors ui, and vi = qi, and then create the matrices U and V associ-
ated with the SVD of A. All of this shows that, for a Hermitian matrix, we
have both σi = |λi| and the corresponding eigenvectors vi are also the
right singular vectors. Note that if the singular values are not ordered, then
we can simply use the trick of multiplying Σ by a permutation matrix.

3. How to (not) compute the SVD

See textbook Chapter 31

Computing the SVD is a little like solving a Least-Square problem: there are
very easy but very unstable ways of doing it, but it is much harder to do it in a
stable and accurate way. In fact, it seems to be so difficult that most textbooks
ignore the question entirely, or give very brief and incomplete statements. We

127

shall therefore follow suite, and leave any computation of the SVD to profes-
sionals (e.g. LAPACK routines). Nevertheless, it is quite informative to see why
the easy/obvious method may fail.

In the previous lecture, we saw that, given a matrix A, the SVD of the ma-
trix A∗A is

A∗A = VD2
σV
∗ (5.31)

where Dσ is a diagonal matrix containing all of the singular values, and V is
the matrix of the right singular vectors of A. But this expression is also an
expression for the diagonalization of A∗A. Therefore, V is revealed to be the
matrix of its eigenvectors, and its eigenvalues are therefore σ2

i .

This suggests that a very simple technique for finding the singular value de-
composition of A is:

• Form A∗A

• Find its eigenvalues λi and eigenvectors vi using the QR algorithm for
symmetric matrices

• Let σi =
√
λi, and Avi = σiui. This can always be done because A∗A is

positive definite.

If A is not an ill-conditioned matrix, just as in the case of Least Square problems,
this does indeed work. However, one of the main advantages of using Singular
Value Decomposition is to be able to deal with matrices that are close to being
singular, or that are actually singular. Unfortunately, recall that

cond(A∗A) = cond(A)2 (5.32)

so if A is already poorly conditioned, A∗A will be even more poorly conditioned
and any operation of this matrix will be prone to truncation errors of order one.

The trick to performing a Singular Value Decomposition numerically therefore
crucially hangs on not forming the product A∗A. The textbook gives some hint
as to how this can be done. See more on the topic in Matrix Computations by
Golub & Van Loan. The SVD algorithms from LAPACK are described in
http://www.netlib.org/lapack/lug/node32.html, and come in two forms:
basic algorithms (xGESVD), and divide and conquer algorithms (xGESDD), where
x here stands for the letters S (single precision), D (double precision), C (single
precision complex) and Z (double precision complex). Read the documentation
to see which one is more appropriate / more efficient for your particular problem,
though both work for all matrices.

4. Practical uses of the SVD

See Chapter 5 of the textbook

Now comes the fun part: why and how should we use the SVD? Here are a
number of practical uses for the SVD, ranging from simple, to very useful, to
really cool.

128

4.1. Calculating the condition number of a matrix

As mentioned in one of the very first lectures, and proved in the last one, the
condition number of a matrix is equal to the ratio of the first to the last singular
value: for a general m× n matrix,

cond(A) =
σ1

σp
where p = min(m,n) (5.33)

This ratio is trivially computed once we have all the singular values. SVD is
therefore the main way of estimating the condition number of a matrix. We
generally say that a matrix is well conditioned if cond(A) is close to one, poorly
conditioned if 1� cond(A)� ε−1

mach, ill-conditioned if cond(A) = O(ε−1
mach) and

singular if cond(A)→∞.

4.2. Least Square Problems

Recall that a Least-Square problem is an overconstrained linear problem of the
kind Ax = b where A is an m × n matrix with m > n. It can be solved very
easily and robustly with SVD. Indeed, first, let us re-write the problem using the
normal equations, as

A∗Ax = A∗b (5.34)

and then use the reduced SVD of A to rewrite this as

VΣ̂Û∗ÛΣ̂V∗x = VΣ̂Û∗b (5.35)

which can be reduced further to

Σ̂Σ̂V∗x = Σ̂Û∗b (5.36)

because V is by construction non-singular, and using the fact that Û∗Û = I.

This time, as long as Σ̂ is non-singular (i.e. none of the singular values are
zero), then we can invert this somewhat trivially to

x = VΣ̂−1Û∗b (5.37)

where Σ̂−1 is the n × n diagonal matrix containing 1/σi as entries. In essence,
the solution can be obtained simply by matrix multiplication.

The advantage of using SVD is that the problem can still be solved, at least
approximately, if the matrix A is singular, i.e. some of the singular values
are exactly zero, and therefore Σ̂ is singular. To proceed, we simply solve the
first non-zero r− rows of this set of equations, and leave the other variables
as undetermined. This may seem weird, but there is a very simple geometric
interpretation of the problem, and why this solution works.

Consider for instance a Least Square problem, in the weird situation where
all the data you are trying to fit lies exactly on a straight line (and you have
a lot of points on that line!), but you are somehow trying to fit the equation
of a plane. One of the coefficients must remain undetermined because there is

129

an infinite number of planes going through a single line. Hence, by solving the
smaller problem and leaving the last coefficient undetermined, we can actually
get the correct equation of that line!

This is quite important even if your data does not exactly lie on a straight
line. Suppose most of your data lies close to a straight line (i.e, lies on a line
with some small scatter around it), and you are trying to fit the equation of a
plane – then, the matrix A will not be singular, but instead will be quite poorly
conditioned. The SVD method will return very small singular values in its last
entries, and you should use this information as a hint that perhaps it was a bad
idea to try to fit a plane. The solution is to discard the equations associated with
singular values that are too small, and only focus on those that have reasonable
singular values.

4.3. Poorly conditioned exact problems

The remarks made in the previous section provide important insight on what
to do with poorly-conditioned or ill-conditioned exact problems (by exact, we
imply problems of the Ax = b kind with A square). As discussed in Chapter
2, solving a poorly conditioned/ill-conditioned exact problem using the stan-
dard exact methods such as Gaussian Elimination or LU decomposition can be
very problematic – either returning an answer that has very large errors, or not
being able to return an answer at all (e.g. when the matrix appears to be sin-
gular in floating-point arithmetic even though it is not actually exactly singular).

In this case, SVD can be of useful to provide the answer. Using the SVD
of A, we write

ÛΣ̂V∗x = b→ Σ̂V∗x = Û∗b (5.38)

As in the Least-Square case, if Σ̂ is exactly singular or contains singular values
that are too small when compared with σ1, we can simply solve a reduced
problem containing the first s equations that have sufficiently large singular
values. This will leave some of the entries of x undetermined, but it is better
to know that these entries are undetermined, than to return answers that are
wrong by a very large factor.

4.4. Low-rank approximation of matrices

We now come to the coolest application to SVD, namely the possibility of ap-
proximating large matrices with much smaller ones (called low-rank approxima-
tions).

The idea is the following. From the definition of the SVD, we have that

aij =
∑
k,n

uik(Σ)knv
∗
jn =

r∑
k=1

uikσkv
∗
jk (5.39)

since Σ is diagonal, containing non-zero entries from 1 to r. This can be rewrit-
ten in vector form as

A =
r∑

k=1

σkBk (5.40)

130

where the matrix Bk has components (Bk)ij = uikv
∗
jk. As such the matrix B1

is formed by the outer product of the first column vectors of U and V,

B1 = u1v
∗
1 (5.41)

the matrix B2 is formed by the outer product of the second column vectors,

B2 = u2v
∗
2 (5.42)

and so forth.

Since the singular values appearing in the sum from 1 to r gradually decrease
with k, one may actually wonder if it is possible to ignore the terms in the sum
for which σk is very small, i.e., to truncate the sum at an order ν that is smaller
than r, and still have a reasonably good approximation for A:

A '
ν∑
k=1

σkBk, where ν < r. (5.43)

The answer is not only yes, but it can be shown in fact that this approxima-
tion is the best possible approximation we can make of rank-r A using a matrix
of rank ν < r. This is stated in this theorem (that shall not be proved):

Theorem: If we define, for any 1 ≤ ν < r the matrix

Aν =
ν∑
k=1

σkukv
∗
k (5.44)

then
||A−Aν ||2 = inf

B, rank(B)≤ν
||A−B||2 = σν+1 (5.45)

and

||A−Aν ||F = inf
B, rank(B)≤ν

||A−B||F =
√
σ2
ν+1 + · · ·+ σ2

r (5.46)

This theorem implies that the norm of the residual ||A−Aν || has the small-
est possible norm among all possible ||A − B|| created using matrices B that
have rank ν or less. In other words, Aν is the best possible matrix of rank ν that
can be created to approximate A in both Euclidean and Frobenius norm sense.
This is incredibly powerful, and can be used in a vast number of applications.

Example: Image compression. Consider for instance image compression:
a black and white image is simply an m × n matrix with entries aij measuring
the grey-level associated with pixel located at position (xi, yj). Usually, an
image will have several million pixels, with m and n well in excess of a few thou-
sand pixels in each direction, so r can be extremely large. As it turns out, by

131

doing an SVD of the matrix A, we can reconstruct the image quite accurately
using ν = O(100) (sometimes more, sometimes less, depending on the actual
image and the resolution required). This means that the image contained in the
matrix A can be compressed by saving only the entries of a few hundred vectors
ui and vi, instead of all thousands of them. This is a huge compression rate!

Example: Low order models. SVD is often used to extract so-called low
order models for complex systems. Used in this fashion, it is usually called
with other names, such as Principle Component Analysis, Empirical Orthogonal
Functions, Proper Orthogonal Decomposition (each field having reinvented the
wheel in different ways, it seems). etc.. The idea is to take a system that has
some complex spatiotemporal dependence, and to see whether that dependence
can be approximated with the evolution of a few basic modes only – a little
bit like the idea of SVD for image reconstruction, but now adding the full 3D
dependence of a field, as well as its time dependence. To see how it works,
imagine for instance working with a time-dependent 2D field. That field is
resolved in a m × n map, and contains p snapshots of the map. One can then
construct an m×np matrix (or, equivalently, an mp×n one), by stacking all the
snapshots together. The SVD of that matrix will then pick up the spatiotemporal
evolution of the modes that have the most energy, and that information can then
be used to focus our modeling efforts on understanding the behavior of these
few modes only (instead of the entirety of the complex system). Examples of
use of this method in real-life applications include:

• Climate and weather monitoring/forecast (to identify recurrent patterns)

• Monitoring and modeling neurological activity

• Study of turbulent flows in engineering, solar cycle, etc.

Chapter 6

Iterative methods for the
solution of linear systems

In this Chapter we now go back to the study of exact linear systems of the
kind Ax = b, with A an m×m matrix, and look at the possibility of designing
iterative methods to solve this equation. We have seen the power of well-designed
iterative methods in solving eigenvalue problems, and it is well worth asking
whether such methods can be applied here too, with two considerations in mind:

• The basic schemes for the solution of linear systems are all schemes that
take O(m3) floating point operations to find x. This rapidly becomes very
expensive for large matrices, and it is worth asking whether it is possible
to design algorithms that iteratively converge to the right solution using
N iterations of an O(m2) operation (e.g. a matrix multiplication), where
N � m (see Figure 1).

• The basic LU and Gaussian schemes are also inherently difficult to paral-
lelize. Can iterative schemes be designed that are much easier to operate
in parallel?

#"itera(ons"
O(m3)"

||Ax2b||"

O(1)"

O(εmach)"

O(Nm2)"

Direct"Solver"(LU,"GE,GJ)"

Itera(ve"Solver"?"

Figure 1. Illustration of the convergence of direct vs. (ideal) iterative solvers.

132

133

The answer to both questions is yes, if the matrix A is well-conditioned.
Let us now learn a few examples of such algorithms.

1. Gauss-Jacobi, Gauss-Seidel and Successive Over-Relaxation algo-
rithms

These three algorithms are effectively variants of the same basic idea, which is
a nice introduction to the theme of iterative methods for exact equations. Let’s
begin with the Gauss-Jacobi method, which is the simplest one.

1.1. Gauss-Jacobi (or simply, Jacobi)

The idea behind the algorithm is to write A = D + R where D is a diagonal
matrix containing the diagonal elements of A, and R is the rest, i.e. a matrix
whose diagonal elements are 0. Then,

(D + R)x = b→ Dx = b−Rx→ x = D−1(b−Rx) (6.1)

Note that since D is diagonal with elements aii, D−1 is known too (it is the
diagonal matrix with elements 1/aii).

Where does this leave us? Well, the key is that this can be viewed as an it-
erative algorithm, where we start with a guess x(0), and apply

x(k+1) = D−1(b−Rx(k)) (6.2)

If (and this is a BIG if!) the algorithm converges, then the limit satisfies x =
D−1(b −Rx), which is equivalent to Ax = b, and so x is indeed the solution
we are looking for. Note that the operation count for each step is very low, as
we can effectively write

x
(k+1)
i =

1

aii
(bi −

m∑
j=1

rijx
(k)
j) (6.3)

which contains exactly m multiplications/divisions per value of i (recalling that
the diagonal rij are zero), hence a total of m2 multiplications/divisions for each
iteration.

We are therefore exactly in the situation envisaged: (1) if the algorithm con-
verges in a number of steps N � m, then we can solve Ax = b in O(Nm2)
steps instead of O(m3) steps, and (2) updating each component can be done
independently of the others, so this is inherently parallelizable.

The big IF, however, needs to be resolved: why should this iterative algorithm
converge at all? To answer this question, we need to look at the spectral ra-
dius of a matrix M. Recall that the spectral radius of any square matrix M
is ρ(M) = maxi |λi|. There are two important properties/theorems associated
with the spectral radius of a matrix.

134

Property 1: If M is diagonalizable, and ρ(M) < 1, then limk→∞Mkx = 0 for
any vector x.

Proof: Since ||v|| = 0 iff v = 0 for all v, it suffices to show ||Mkx|| → 0 as
k →∞. If M is diagonalizable, then we can write x =

∑
i αivi where the vi are

the eigenvectors of M with eigenvalues λi. Then,

||Mkx|| = ||
∑
i

αiλ
k
i vi|| ≤ ρ(M)k||

∑
i

αivi|| = ρ(M)k||x|| (6.4)

Since ρ(M) < 1, then ρ(M)k → 0 as k tends to infinity, which completes the
proof. �

Note that the condition M is diagonalizable is not particularly constraining
as long as we allow for complex eigenvectors/eigenvalues, because it has been
shown that the set of non-diagonalizable matrices in Cm×m has measure 0 (i.e.
almost all matrices are diagonalizable in Cm×m).

Property 2: If ρ(M) < 1 then (I−M)−1 exists and

(I−M)−1 =
∞∑
k=0

Mk (6.5)

Proof: Let’s consider the partial sum BK = 1 + M + · · ·+ MK . Then,

(I−M)BK = (I−M)(1 + M + · · ·+ MK) = 1−MK+1 (6.6)

so, for any vector x,
(I−M)BKx = x−MK+1x (6.7)

Now, we just proved that if ρ(M) < 1, limK→∞MKx = 0, which implies that

lim
K→∞

(I−M)BKx = x⇒ (I−M) lim
K→∞

BK = I (6.8)

This finally proves that the inverse of I−M is limK→∞BK , as required. �

We can now use both properties to find a necessary condition for convergence
of the algorithm, and that condition is stated in the following theorem.

Theorem: The iterative algorithm

x(k+1) = Tx(k) + c (6.9)

where T is a square matrix and c is a constant vector, converges provided
ρ(T) < 1.

135

Before we prove it, note that it is indeed related to the algorithm we want
to use, with T = −D−1R and c = D−1b. The theorem would then imply that
the algorithm converges provided ρ(D−1R) < 1.

Proof: We can expand the recursion back to k = 0 as

x(k+1) = Tx(k)+c = T(Tx(k−1)+c)+c = · · · = Tk+1x(0)+(Tk+Tk−1+· · ·+T+I)c
(6.10)

Using the fact that ρ(T) < 1, we have on the one hand that limk→∞Tk+1x(0) =
0, and on the other hand, that

lim
k→∞

Tk + Tk−1 + · · ·+ T + I = (I−T)−1 (6.11)

This then shows that
lim
k→∞

x(k) = (I−T)−1c (6.12)

or in other words that x(k) indeed converges. Furthermore, the limit is

x = (I−T)−1c (6.13)

which is indeed the solution of x = Tx + c. �

To summarize, we therefore have that the algorithm

x(k+1) = D−1(b−Rx(k)) (6.14)

converges provided ρ(D−1R) < 1, and that the limit is the solution of the equa-
tion (D + R)x = b. This is the Gauss-Jacobi algorithm.

Note that proving that ρ(D−1R) < 1 requires calculating the largest eigen-
value of D−1R, which can be done for instance using a basic power iteration
on a single vector. In practice, however, this can be as expensive as actually
applying the algorithm, so usually no-one bothers checking first – we just apply
the Gauss-Jacobi algorithm, and if it converges, all is good (if it doesn’t, too
bad!).

As a rule of thumb, however, matrices whose diagonal coefficients are large
compared with the non-diagonal ones are well-behaved from the point of view
of Gauss-Jacobi convergence, because if D has large eigenvalues, then D−1 will
have small ones, and so one may hope that D−1R will also have small eigen-
values. Matrices that satisfy ρ(D−1R) < 1 are therefore called diagonally
dominant. They are very common in problems that arise from the solution of
PDEs for instance (e.g. the heat equation). In addition, the matrix A obtained
in this case is usually banded, so calculating Rx is O(m) instead of O(m2)!

136

Algorithm: Gauss-Jacobi algorithm:

Create D and R from A Set x equal to your guess
do while ||r|| > desired accuracy

x = D−1(b−Rx) ! [Calculate new vector]
r = b−Ax ! [Calculate a new residual]

enddo

Note that it should be obvious that in practice we do not actually create the
matrices D−1 and R – the algorithm written as is is just a short-hand notation
for the component wise formula given in equation (6.3), with rij = aij unless
i = j in which case rij = 0.

One of the disadvantages of the Gauss-Jacobi algorithm is that its convergence
is typically quite slow. On the other hand, as discussed earlier, it is also very
easily parallelizable. So using it really depends on the application and computer
architecture at hand!

1.2. Gauss-Seidel

The Gauss-Seidel algorithm is very similar to the Gauss-Jacobi algorithm but
directly over-writes the vector x as the algorithm proceeds. The advantage is
that it effectively uses the updated values of the coefficients of x as they come
to calculate the next coefficients, and also does not require storing 2 vectors (x

and y). Effectively, instead of using (6.3) to compute x
(k+1)
i , the algorithm uses

x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

m∑
j=i+1

aijx
(k)
j

 (6.15)

noting that rii = 0 again. In a compact form, the GS algorithm is written as

x(k+1) = D−1(b− Lx(k+1) −Ux(k)) = (D + L)−1(b−Ux(k)), (6.16)

where L and U are respectively the lower and upper triangular matrices exclud-
ing the diagonal entries, resulting A = L + D + U. In practice you can write it
very simply as follows:

Algorithm: Gauss-Seidel algorithm:

Create D, L, and U from A Set x equal to your guess
do while ||r|| > desired accuracy

x = (D + L)−1(b−Ux) ! [Calculate new vector]
r = b−Ax ! [Calculate a new residual]

enddo

The only remaining part here is to put together a meaningful exit strategy

137

(i.e., how does the algorithm know it has converged).

The Gauss-Seidel algorithm generally has much better convergence properties
than the Gauss-Jacobi algorithm. For instance, it has been shown that if the
Gauss-Jacobi algorithm converges, then the Gauss-Seidel algorithm converges
faster. Furthermore, the Gauss-Seidel algorithm sometimes converges for ma-
trices for which Gauss-Jacobi does not converge. For instance, Gauss-Seidel
has been shown to converge for any symmetric, positive definite matrix, which
is not the case for Gauss-Jacobi. For serial algorithms, one should therefore
always prefer the Gauss-Seidel algorithm. On the other hand, the algorithm
is now no longer perfectly parallelizable, and so the gain in convergence rate
may not outweigh the loss in scalability on parallel architectures. In short, the
Gauss-Jacobi algorithm may remain preferable in that case.

1.3. Successive over-relaxation algorithm (SOR)

The SOR algorithm is a generalization of the Gauss-Seidel algorithm which can
be fine-tuned to have a significantly faster convergence rate. To see how it works,
first note that we can re-write the Gauss-Seidel algorithm as

x(k+1) = D−1
(
b− Lx(k+1) −Ux(k)

)
(6.17)

where L and U are the lower-triangle and upper-triangles of the matrix A re-
spectively (both have zeros on the diagonal).

Let’s subtract x(k) on both sides, to get

x(k+1) − x(k) = D−1
(
b− Lx(k+1) −Ux(k) −Dx(k)

)
(6.18)

The term on the right-hand-side can therefore be viewed as the correction to be
applied to x(k) to get to x(k+1).

The idea of over-relaxation is, as the name suggests, to overapply the correction,
as in

x(k+1) = x(k) + ωD−1
(
b− Lx(k+1) −Ux(k) −Dx(k)

)
(6.19)

= (1− ω)x(k) + ωD−1
(
b− Lx(k+1) −Ux(k)

)
(6.20)

where ω is a factor between 1 and 2. Note that ω = 1 simply recovers the Gauss-
Seidel algorithm, which is why SOR is often viewed as a simple generalization
of the latter.

A complete theory of convergence for this algorithm remains to be constructed,
but we have the following theorems:

• Kahan (1958) proved that if ω ≥ 2 or ω ≤ 0, the algorithm necessarily
diverges. This justifies the upper limit selected above.

• A further theorem states that if A is positive definite then the algorithm
converges for any 0 < ω < 2, for any choice of initial vector.

138

• If A is positive definite and tridiagonal, then the optimal choice of ω for
convergence is

ω =
2

1 +
√

1− ρ(D−1R)2
(6.21)

Note that actually computing ρ(D−1R)2 may be too expensive in practice,
unless D−1R is of a particular well-known form (which may well be the
case for tridiagonal positive definite matrices arising from PDE problems).

The subject of what the optimal value of ω for fastest-convergence is for any
general linear system is still the subject of ongoing research, however. Some
trial and error in selecting ω may be needed in that case.

Being based on Gauss-Seidel, it should be obvious that the SOR algorithm is not
as naturally parallelizable as the Gauss-Jacobi algorithm. As a result, while it
should always be preferred for serial algorithms, you should look at the trade-off
between convergence rate and scalability to decide whether to use it in parallel.

2. The conjugate gradient method

As we will demonstrate in this Section, there exists an incredibly powerful iter-
ative method for solving Ax = b when A is a real, positive definite, symmetric
matrix, for which convergence is not only guaranteed, but for which it is guar-
anteed to take at most m steps. In other words, this iterative method is at its
worse, an O(m3) method, which is the same as direct methods. At its best it can
find solutions as expected in N � m steps, therefore providing a much faster
way of finding the solution x. This method is called the conjugate gradient
method. In the following sections, we will gradually construct the method and
see why it works.

2.1. Real symmetric positive definite linear systems and minimiza-
tion

An interesting non-trivial interpretation of the linear system Ax = b when A
is a real, positive definite, symmetric matrix is that its solution x is also the
solution of a minimization problem for a quadratic form.

Proof: To see this, consider the scalar function from Rm to R,

f(x) =
1

2
xTAx− xTb =

1

2

m∑
j,k=1

xjxkajk −
m∑
j=1

xjbj (6.22)

This function is effectively a homogeneous multidimensional quadratic function
(a quadratic form), that can be shown to be convex when A is positive definite,
and therefore has a single global minimum. To find this minimum, we calculate
∇f and set it to zero :

(∇f)i =

m∑
k=1

1

2
xkaik +

m∑
j=1

1

2
xjaji− bi =

m∑
j=1

(aijxj − bi) = (Ax−b)i = 0 (6.23)

139

The solution to ∇f = 0 is therefore also the solution to Ax = b. �

2.2. Iterative methods for minimizing quadratic forms

An iterative method for minimizing a quadratic form starts at a given point x(0),
and applies an algorithm of the kind x(k+1) = g(x(k)) that gradually decreases

the distance between x(k) and the minimum. For a quadratic form that is known
to be convex (as it is the case here) a simple way to proceed is to start going
in a particular direction, and go to the minimum of f(x) along that direction,
e.g. see Figure 2. Then choose another direction, and minimize f along the new
direction, and so forth.

x(k)

x(k+1)

Figure 2. Minimization of f along a particular direction.

Minimizing f along a particular direction can be done analytically for a
quadratic form. Indeed, suppose the selected direction vector at step k is p(k),
starting from vector x(k). Then we know that the next iterate x(k+1) satisfies

x(k+1) = x(k) + αkp
(k) (6.24)

The key is to chose the scalar αk so that x(k+1) minimizes f along that line.
Since

f(x(k+1)) =
1

2
x(k+1)TAx(k+1) − x(k+1)Tb (6.25)

=
1

2

(
x(k) + αkp

(k)
)T

A(x(k) + αkp
(k))− (x(k) + αkp

(k))Tb

=
1

2
x(k)TAx(k) − x(k)Tb

+
αk
2

(
p(k)TAx(k) + x(k)TAp(k)

)
+
α2
k

2
p(k)TAp(k) − αkp(k)Tb

we set df(x(k+1))/dαk = 0 to get

p(k)TAx(k) + αkp
(k)TAp(k) − p(k)Tb = 0 (6.26)

140

where we used the fact that A is symmetric to show that p(k)TAx(k) = x(k)TAp(k).
This equation has the solution

αk =
p(k)T r(k)

p(k)TAp(k)
(6.27)

where r(k) = b − Ax(k) is the residual at step k. In other words, as long as
we have picked a direction p(k) at step k, we can find the minimum of f along
this direction analytically. The only remaining problem is how to choose the
directions p(k) ?

2.3. Gradient descent

The most natural algorithm one can immediately come up with when picking
the directions p(k) is to find the direction of steepest descent, i.e. to go toward
minus the gradient of f at x(k) (recall that the gradient always points upward,
and we want to go downward):

p(k) = −∇f(x(k)) = −(Ax(k) − b) = r(k) (6.28)

This suggests the following algorithm for the solution of real symmetric and
positive definite linear systems by gradient descent:

Algorithm: Gradient descent for the solution of Ax = b:

Initialize guess x = 0
r = b
do while ||r|| > desired accuracy

p = r ! [Set direction]

α = pT r
pTAp

! [Find optimal α]
x = x + αp ! [Update x]
r = b−Ax ! [Calculate new residual]

enddo

Example: Consider the system(
2 1
1 2

)(
x
y

)
=

(
1
2

)
(6.29)

We then create the function

f(x) = x2 + xy + y2 − x− 2y (6.30)

The contours of this function in the (x, y) plane are shown in Figure 4, as well

as the trajectory traced by the points x(k) gradually obtained by the algorithm
above. Starting from x(0) = (0, 0), we follow the direction of the gradient toward
the minimum. Since the gradient is perpendicular to the contours of f , we

141

basically leave perpendicularly to the contour. We stop when the function f
begins to increase again, which happens exactly when the line becomes tangent
to a contour. This is x(1). We repeat the algorithm, and gradually approach the
true solution, which is (0, 1).

Figure 3. Gradient descent trajectory for example 1.

We see that it takes more than 2 steps to get to a good answer for this 2D
problem – which is not great, because 2 is exactly the dimension of A. This
slow convergence only gets worse for more poorly conditioned matrices, where
convergence rate is very slow. The problem with gradient descent, as we see
here, is that the algorithm revisits a direction many times. In what follows, we
therefore look at another strategy which guarantees convergence in at most m
steps, by making sure that directions are never re-visited. This is the principle
behind the conjugate gradient method.

2.4. The conjugate gradient method

In order to understand the conjugate gradient method, we first need to introduce
the notion of conjugate directions.

Definition: Two non-zero vectors u and v are said to be A-conjugate if

uTAv = 0 (6.31)

This basically identifies pairs of vectors where one is orthogonal to the image
of the other after application of A. Since uTAv looks somewhat like an inner
product, note that if A is positive definite we can also define a new norm:

||u||A =
√

uTAu (6.32)

which will be useful later.

Definition: A set of vectors {pi} forms a conjugate set (with respect to the
matrix A) provided

pTi Apj = 0 for all i 6= j (6.33)

142

For example, if A is a real symmetric matrix of size m×m, it is easy to see that
the eigenvectors form a conjugate set, which in turns immediately shows that
any real symmetric matrix has a conjugate set {pi}i=0...m−1, and this set forms
a basis for Rm.

Suppose we had somehow already found a conjugate set for A. We could then
write the solution x of Ax = b as

x =
m−1∑
i=0

αipi (6.34)

Substituting this expression into Ax = b, then taking the inner product with
pj , we get

pTj A

m−1∑
i=0

αipi = pTj b→ αj =
pTj b

pTj Apj
(6.35)

which essentially provides the solution x of the equation when we plug these
back into (6.34). In practice, however, finding the set {pi}i=0...m−1 is already
an O(m3) task (if we have to find for instance the eigenvectors of A), at which
point it is as expensive as solving Ax = b directly (and therefore pointless).

However, if we were somehow able to construct the vectors p0, p1, etc itera-
tively, so that p(0) = p0 is our starting vector, then p(1) = p1 is the next iterate,
and so forth, and at each iteration let

x(k+1) =

k∑
i=0

αkp
(k) = x(k) + αkp

(k) (6.36)

then we are effectively constructing successive approximations to x, which we
know must converge to x exactly in a finite number of iterations, since x(m) = x.
If, furthermore, the coefficients αk decay very rapidly with k, then x(k) may in
fact tend to the true solution x much faster, using only N � m terms in this
sum, instead of all m of them. If that is the case, we would only need to com-
pute N of the conjugate directions, and the operation count will be much smaller
than O(m3). The crux of the problem, however, is to create an algorithm to

find p(k+1) given knowledge of p(k).

To do this, let’s try to inspire ourselves from the gradient descent algorithm,
but modify it slightly to make sure the directions p(k) that are iteratively cre-
ated are conjugate to one another. At the very first step, we start as usual:

x(0) = 0 and p(0) = r(0) = b (6.37)

therefore picking the direction of steepest descent. Then we construct

x(1) = x(0) + α0p
(0) (6.38)

as before, where α0 is chosen to minimize f along the p(0) direction. At the
next step, steepest descent would normally pick

p(1) = r(1) = b−Ax(1) (6.39)

143

However, It is easy to see that this is not conjugate to p(0). Indeed,

p(1)TAp(0) = r(1)TAb = (b−Ax(1))TAb = bTAb− x(1)TATAb (6.40)

which has no reason to be zero. However, suppose instead we wrote

p(1) = r(1) + β0p
(0) (6.41)

that is, we shift p(1) slightly away from steepest descent, and choose β0 so that
p(1)TAp(0) = 0. This simply requires picking

p(1)TAp(0) = (r(1) + β0p
(0))TAp(0) = 0→ β0 = − r(1)TAp(0)

p(0)TAp(0)
(6.42)

Note that, with this choice, we have that

r(1)T r(0) = 0 (6.43)

because

r(1)T r(0) = (b−Ax(1))T r(0) = bT r(0) − (x(0) + α0p
(0))TAT r(0)

= (b−Ax(0))T r(0) − α0p
(0)TAr(0)

= r(0)T r(0) − α0p
(0)TAr(0) = 0 (6.44)

using the symmetry of A, and by definition of α0.

By extension, we see that it may indeed be possible to construct a sequence
of conjugate directions from the following rough algorithm:

• x(k+1) = x(k) + αkp
(k) where αk = p(k)T r(k)

p(k)TAp(k)

• r(k+1) = b−Ax(k+1)

• p(k+1) = r(k+1) + βkp
(k) where βk = −r(k+1)TAp(k)

p(k)TAp(k)

To be sure that this algorithm is indeed doing the right thing, we must prove
that at every iteration, the new direction created is conjugate to all the previous
ones. To do this, we will simultaneously prove that at each iteration

• r(k)Tp(i) = 0 for any i < k. In other words, the residuals are orthogonal
to the previous directions

• r(k)T r(i) = 0 for any i < k. In other words, the residuals are orthogonal to
each other

• p(k)TAp(i) = 0 for any i < k. In other words, the directions form a
conjugate set

144

Proof by induction: At step 1, we have that r(1)Tp(0) = r(1)T r(0) = 0 (see

proof earlier), and we have constructed β0 so that p(1)TAp(0) = 0. Let’s now
assume that these statements are true at step k, and prove them at step k + 1.

To do so, first, let’s note that

r(k+1) = b−Ax(k+1) = b−A(x(k) + αkp
(k)) = r(k) − αkAp(k) (6.45)

so

r(k+1)Tp(i) = (r(k) − αkAp(k))Tp(i) = r(k)Tp(i) − αkp(k)TAp(i) (6.46)

At this point, there are two possibilities: either i < k, in which case we know by
the induction assumption that r(k)Tp(i) = 0 and p(k)TAp(i) = 0. Or i = k, in
which case r(k+1)Tp(k) = r(k)Tp(k) − αkp(k)TAp(k). But this must be equal to
zero by the definition of αk.

Next, we evaluate

r(k+1)T r(i) = (r(k) − αkAp(k))T r(i) = r(k)T r(i) − αkp(k)TAr(i) (6.47)

Noting that r(i) = p(i) − βi−1p
(i−1) (from the algorithm) then this is also

r(k+1)T r(i) = r(k)T r(i) − αkp(k)TA(p(i) − βi−1p
(i−1)) (6.48)

There are then two possibilities: either i < k, in which case by the induction
assumptions each term is zero, or, i = k, in which case the third term is zero,
and we are left with

r(k+1)T r(k) = r(k)T r(k) − αkp(k)TAp(k) = 0 (6.49)

by the definition of αk (once again).

Finally, let’s evaluate p(k+1)TAp(i). We have

p(k+1)TAp(i) = (r(k+1) + βkp
(k))TAp(i) = r(k+1)TAp(i) + βkp

(k)TAp(i) (6.50)

Again, there are two possibilities: either i < k, in which case the second term is
zero, and we are left with

p(k+1)TAp(i) = r(k+1)TAp(i) = r(k+1)T

(
r(i) − r(i+1)

αi

)
= 0 (6.51)

since we have already proved that r(k+1) is orthogonal to any residual r(i) with
i ≤ k. Or, i = k in which have we have

p(k+1)TAp(i) = r(k+1)TAp(k) + βkp
(k)TAp(k) (6.52)

but that is zero by the definition of βk. �

145

This rather cumbersome proof shows that that directions created form the re-
quired conjugate set. This finally leads to the following theorem.

Theorem: The conjugate gradient algorithm, starting from x(0) = 0, r(0) =
p(0) = b, and applying the iterations described above, converges to the true
solution in at most m iterations. The residuals are orthogonal to one another
with r(k)T r(i) = 0 for any i < k, and the directions are conjugate to one another
with p(k)TAp(i) = 0 for any i < k. We also have the identity of the following
Krylov subspaces:

K(k) = 〈x(1),x(2) . . . ,x(k)〉 = 〈p(0),p(1) . . . ,x(k−1)〉
= 〈r(0), r(1) . . . , r(k−1)〉 = 〈b,Ab . . . ,Akb〉 (6.53)

Finally, if we consider the error e(k) = x− x(k) (i.e. the difference between the
true solution and the approximate solution at step k), then

||e(k)||A = infu∈K(k) ||x− u||A (6.54)

(or in other words, x(k) is the best possible approximation of the true solution

x that lives in the subspace K(k), at least when that distance is measured with
the norm || · ||A).

Much of the content of this theorem has already been proved, or is relatively
trivial to prove (as the equivalence of the subspaces for instance). The only re-
maining item, which is also the most important aspect of the conjugate gradient
algorithm, is the proof that the solution at the k−th iteration actually mini-
mizes the distance to the true solution among all possible vectors in the Krylov
subspace K(k). To show this, consider an arbitrary vector u in K(k). Then

||x− u||2A = ||e(k) + x(k) − u||2A = (e(k) + x(k) − u)TA(e(k) + x(k) − u)

= ||e(k)||2A + 2(x(k) − u)TAe(k) + (x(k) − u)TA(x(k) − u) (6.55)

Noting that (1) Ae(k) = Ax−Ax(k) = b−Ax(k) = r(k), (2) r(k) is perpendicular

to all the vectors in K(k), and (3) that x(k) − u ∈ K(k), we have that 2(x(k) −
u)TAe(k) = 0, leaving

||x− u||2A = ||e(k)||2A + ||x(k) − u||2A (6.56)

Since this is the sum of two squares, this quantity reaches a minimum for all
possible u in K(k) when u = x(k). �

The implications of the theorem are quite profound. For instance, the last
statement immediately implies that

||e(k+1)||A ≤ ||e(k)||A (6.57)

since we are expanding the space over which ||x − u||A is minimized at each
iteration. One important question, which we have not addressed yet, is the rate

146

of convergence of the algorithm. In that regard, it can be shown (see textbook)
that

||e(k)||A ≤
2(√

κ+1√
κ−1

)k
+
(√

κ+1√
κ−1

)−k ||e(0)||A (6.58)

where
κ = cond(A) =

σ1

σm
(6.59)

Note that since κ is usually large-ish to very large, this is often written more
simply as

||e(k)||A ≤ 2

(√
κ− 1√
κ+ 1

)k
||e(0)||A (6.60)

We see that the rate of convergence depends on how small
√
κ−1√
κ+1

is. If κ is too

large, then this number is close to 1 and the convergence rate will be slow. On
the other hand if κ is close to 1, then the convergence rate can be very fast.

Finally, here is a basic version of the algorithm. The most expensive step (which
is O(m2)) is the multiplications of A with the vector p, which is done 3 times.
For this reason, we first construct y = Ap, and save it.

Algorithm: Basic Conjugate gradient algorithm:

x = x0,r = b−Ax p = r,
Calculate ||r||
do while ||r|| > desired accuracy

y = Ap ! [Calculate temporary vector to save time]

α = pT r
pTy

x = x + αp
r = r−αy ! [Uses this formula for r which uses y, avoids

calculating Ax]
Calculate ||r||
β = − rTy

pTy

p = r + βp
enddo

Note how here we have allowed the algorithm to start at a value of x that
is different from 0, which can be useful when we already know a good approxi-
mation to the solution.

A smarter version of this algorithm also exists, which saves a little time on
the computation of α and β:

Algorithm: Smart Conjugate gradient algorithm:

x = x0, r = b−Ax, p = r,
Calculate E = ||r||2

147

do while
√
E > desired accuracy

y = Ap ! [Calculate temporary vector, store in y]
α = E

pTy
x = x + αp
r = r−αy ! [Uses this formula for r which uses y, avoids

calculating Ax]
Calculate Enew = ||r||2
β = Enew

E
p = r + βp
E = Enew

enddo

To show that this is indeed equivalent to the previous one it suffices to show

that, at iteration k, r(k)Tp(k) = r(k)T r(k), and that βk = r(k+1)T r(k+1)

r(k)T r(k)
. This can

be done by induction (see project).

Finally, in cases where A is a sparse matrix, then it is advantageous to write your
own custom matrix multiplication algorithm for the matrix A. If the matrix is
banded, for instance (e.g. tridiagonal), this can reduce the operation count of
the matrix multiplication step from O(m2) to O(m).

Let’s now back to the example given earlier, of the system(
2 1
1 2

)(
x
y

)
=

(
1
2

)
(6.61)

and compare the performance of the two algorithms. We see that, while the
gradient descent algorithm took 7 iterations to get to the true answer (within
machine precision), the conjugate gradient algorithm takes 2 iterations (the
maximum allowed). For well-behaved matrices, the performance of the conjugate
gradient algorithm can be very fast!

3. Preconditioning for the conjugate gradient algorithm

See Chapter 40 of the textbook

As we have seen in the previous lectures, the conjugate gradient algorithm is
guaranteed to find the solution to Ax = b (for a real symmetric positive definite
matrix A) in at most m steps. However, we have also seen quite a few examples
where it does indeed take exactly m steps, at which point the algorithm is as
expensive as a direct solve. The question that we may ask is whether there may
be a way to accelerate convergence. This question is actually quite general, and
can also be raised in the context of other iterative algorithms (Gauss-Jacobi,
Gauss-Seidel, SOR, but also the eigenvalue solvers discussed in Chapter 4).

To see how one may increase the convergence rate for the Conjugate Gradient
algorithm, recall that it is directly related to the condition number κ = σ1/σm

148

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

y

x

Gradient Descent
Conjugate Gradient

Figure 4. Comparison of Gradient Descent trajectory with Conjugate Gra-
dient trajectory for example 1.

of the matrix A. Furthermore, since A is real, symmetric and positive definite,
they eigenvalues are equal to the singular values, so κ = λ1/λm. If the eigen-
values differ widely in size, this number is large, and the matrix A is poorly
conditioned so the algorithm converges very slowly. However, suppose for a
moment that, instead of solving Ax = b, we solved

M−1Ax = M−1b (6.62)

where M is an invertible matrix, chosen so that κ(M−1A) � κ(A). The two
problems are equivalent, but the second would converge much more rapidly. The
matrix M is thus called a preconditioner1 for A.

Choosing a good preconditioner for solving Ax = b usually involves some trade-
off. If M = A, then M−1A = I and has condition number of 1(so the iteration
would converge immediately). But computing M−1 = A−1 is as hard a solving
the original problem, so this is not very useful. On the other hand if M = I then
we can easily compute M−1 but we are not preconditioning at all. We therefore
see that, in practice, we want to find a matrix M that is as close as possible to
the original matrix A but that is also very easily inverted.

Finding a good preconditioner is an art, as there is no general theory or al-
gorithm to help us generate it. In practice, different types of preconditioners are

1Note that it may seem a little weird to write M−1Ax = M−1b, and then call M the precon-
ditioner, rather than, say, writing MAx = Mb, but this is indeed the traditional way of doing
it.

149

recommended for different types of matrices, there is no one-size-fits-all. Precon-
ditioning is the subject of ongoing research. A nice review article on the subject
is given in the paper by Wathen (see website). For the sake of looking at some
examples, however, in this course we will use the diagonal preconditioner,
which consists in letting M be the diagonal matrix that contains the diagonal
elements of A, and whose inverse is trivially computed:

M =

a11

a22

amm

⇒M−1 =


a−1

11

a−1
22

a−1
mm

 (6.63)

Provided A is diagonally dominant, this preconditioner fits our requirements
nicely : it is a good approximation to A, and its inverse is very easy to find. Note,
however, that it is sometimes also quite useless (see for instance the Project).

Even when we have a good preconditioner, there is a fairly major problem with
preconditioning for the Conjugate Gradient algorithm, namely that there is no
guarantee that M−1A should be positive definite or symmetric even when A
is. For instance, even something as simple as the diagonal preconditioner can
be problematic. In other words, we can’t just multiply Ax = b by M−1 and
use the Conjugate Gradient algorithm to solve M−1Ax = M−1b for x. With a
little bit of extra work, however, it turns out that we can construct an equivalent
Conjugate Gradient algorithm that uses preconditioning and doesn’t run into
this problem.

The idea begins with finding2 a matrix C such that

M = CCT →M−1 = C−TC−1 (6.64)

Then, the original problem Ax = b becomes

C−TC−1Ax = C−TC−1b→ C−1Ax = C−1b (6.65)

Finally, if we let Ã = C−1AC−T , x̃ = CTx and b̃ = C−1b, then this becomes
Ãx̃ = b̃. While the introduction of the tilde variable seems bizarre at first, it
has the advantage that Ã is now symmetric and positive definite, as long as A
was (this is very easy to prove). This suggests that we may be able to apply
preconditioning to the Conjugate Gradient algorithm as follows:

• From M, construct C and C−1

• Compute Ã and b̃

• Solve Ãx̃ = b̃ using the Conjugate Gradient algorithm

• Let x = C−T x̃.

2In practice, we will not actually have to find this matrix, but let’s assume it exists.

150

However, it should be fairly obvious that this would take far too long, and that
it is not the right way to proceed. But the introduction of the tilde variables
is still useful as a thought process, because it can be used to determine how to
modify the original Conjugate Gradient algorithm to use preconditioning.

Indeed, let’s explicitly write one iteration of the basic Conjugate Gradient algo-
rithm in the preconditioned tilde variables:

1. ỹ = Ãp̃

2. α̃ = Ẽ
p̃T ỹ

3. x̃ = x̃ + α̃p̃

4. r̃ = r̃− α̃ỹ

5. Ẽnew = ||r̃||2

6. β̃ = Ẽnew

Ẽ

7. Ẽ = Ẽnew

8. p̃ = r̃ + β̃p̃

Step 3 involves x̃, so let’s write it in terms of the original x, to see whether we
can design an algorithm that returns it directly instead of having to compute x̃
first.

x̃ = x̃ + α̃p̃→ CTx = CTx + α̃p̃→ x = x + α̃C−T p̃ (6.66)

This suggest letting p = C−T p̃, in which case we have x = x + α̃p as in the
original algorithm (except for α̃).

Next, let’s look at Step 1: with the new p, we have

ỹ = Ãp̃ = C−1AC−T p̃ = C−1Ap = C−1y (6.67)

as long as we redefine y such that ỹ = C−1y. In that case, we then have Ap = y,
as in the original algorithm.

Next, let’s look at Step 4.

r̃ = r̃− α̃ỹ = r̃− α̃C−1y (6.68)

so if we let r̃ = C−1r, then this becomes r = r− α̃y as in the original algorithm
(except for α̃).

Next, let’s look at Step 5:

Ẽnew = r̃T r̃ = rTC−TC−1r = rTM−1r (6.69)

151

This is not quite as in the original algorithm, but is still nice because it no
longer contains C and C−1, but instead contains the original preconditioner
inverse M−1. Similarly, Step 2 contains

p̃T ỹ = (CTp)TC−1y = pTCC−1y = pTy (6.70)

which is exactly the same in tilde and original variables.

Finally, Step 8 is rewritten as

p̃ = r̃ + β̃p̃→ CTp = C−1r + β̃CTp→ p = M−1r + β̃p (6.71)

which is nearly the same as the original one, except for the fact that M−1 now
multiplies r.

Putting this all together, we see that the algorithm re-written in terms of the
non-tilde variables look very much like the original one, with the exception of
a few places where the expression M−1r appears. This suggests the following
corrections to the Smart Conjugate Gradient algorithm, to account for precon-
ditioning:

Algorithm: Smart Preconditioned Conjugate gradient algorithm:

x = x0, r = b−Ax,
z = M−1r
p = z
E = rT z
do while

√
E > desired accuracy

y = Ap
α = E

pTy
x = x + αp
r = r− αy
z = M−1r
Enew = rT z
β = Enew

E
p = z + βp
E = Enew

enddo

Note that in practice, it is convenient to do the operation z = M−1r outside of
the actual algorithm (by calling a subroutine to do it, for instance), so differ-
ent preconditioners M can easily be swapped in an out. The user then merely
passes the name of that routine as argument to the solver. When done in this
fashion, the beauty of this algorithm is that it is nearly identical to the original
one (the modified steps are written in red for ease of identification), but can
provide fairly dramatic acceleration with a good pre-conditioner M. Note also
how the matrices related to C never appear, and that the algorithm returns x
directly.

152

4. The Generalized Minimal Residual Method

See Chapters 33 and 35 of the textbook

We now introduce an iterative method for solving the matrix equation Ax = b
called the Generalized Minimal RESidual method or GMRES for short. This
method is related to the Conjugate Gradient method in the sense that it works
by minimizing the error on the true solution within a Krylov subspace. How-
ever, there are significant differences, allowing the GMRES algorithm to be
applicable for any matrix A, provided it is a square m × m and an invertible
matrix. The algorithm works by creating a sequence of subspaces Kn ⊂ Rm
of fixed dimension n and finding at each iteration the vector xn such that
‖Axn − b‖2 = inf

u∈Kn

‖Au − b‖2. Note that the choice of the norm is specif-

ically set as the 2-norm since we will utilize the norm-preserving property of
orthogonal matrices Q, i.e., ‖QA‖2 = ‖A‖2. If n � m and if the algorithm
converges rapidly, then the total operation count is much smaller than that of a
direct solver.

4.1. Krylov Subspace

The subspace that we will be creating for the GMRES algorithm is a Krylov
subspace defined, in all generality, as follows:

Definition: The Krylov subspace of a matrix A with respect to a vector v
is defined as

Kn(A,v) := span{v,Av,A2v, . . . ,An−1v} ⊂ Rm (6.72)

Definition: In addition, we also define the m× n Krylov matrix

Kn = [v|Av| . . . |An−1v]. (6.73)

The Krylov space Kn(A,v) is, therefore, the same as the column space of Kn.

Let’s now consider a preliminary version of the GMRES algorithm. Note that we
wish to minimize ||b−Axn||2 with respect to some vector xn ∈ Kn(A,v). Then
there exists some vector c ∈ Rn such that Knc = xn. With this in mind, we
can now rewrite the problem as a minimization problem of ‖b−AKnc||2. Note
that AKn is an m×n matrix where m > n, which means we are dealing with a
Least Squares problem (i.e., an over-determined problem) AKnc ≈ b. We can
use any of the techniques from Chapter 3 to solve it for c. As an example, if
we use the reduced QR decomposition, we first construct the m× n orthogonal
matrix Q̂ and the n× n upper-triangular matrix R̂ such that

Q̂R̂ = AKn.

153

The problem becomes an exact problem using the orthogonal projector p =
Q̂Q̂T ,

AKnc = pb = Q̂Q̂Tb.

Since AKn = Q̂R̂, we solve
R̂c = Q̂Tb

for c. Once c is known, we obtain the final solution from xn = Knc, which is
the closest vector to the true solution that lies in the Krylov subspace Kn(A,v)

You might rightfully be wondering what vector v to use to construct Kn. You
may even be wondering why we’re using the Krylov subspace in the first place, as
opposed to any other arbitrary subspace, as the basis for the minimization. Af-
ter all, there is a non-negligible start-up cost associated with creating the Krylov
subspace because of the repeated multiplication by A. If we were to come up
with arbitrary choices for subspaces that are less computationally expensive, we
could quickly think of the span of the standard basis vectors, span{e1, e2, . . . , en}
or the span of the columns of A, span{a1,a2, . . . ,an}. To see why the Krylov
subspace is the ideal choice, we need to define the minimal polynomial.

Definition: If A is an m×m matrix, then the minimal polynomial p(A) is
defined as the unique monic (i.e., αn = 1) polynomial of least degree such that
p(A)v = 0 for all v ∈ Rm, i.e.,

p(A)v =
n∑
i=0

αiA
iv (where αn = 1) (6.74)

= (α0I + α1A + · · ·+ An) v (6.75)

= 0

It isn’t necessary to know any information about the minimal polynomial of
A nor is it required that you know how to form them, but to make the concept
more concrete, consider the following examples.

Example: Minimal Polynomial of Diagonal Matrices

• It is an easy exercise to verify that the minimal polynomial of I is p(I) =
I − I (that is, with α1 = 1 and α0 = −1). Given any v ∈ Rm, we indeed
have

(−I + I)v = 0.

• Let A be the 2 × 2 diagonal matrix with a11 = 2 and a22 = 1. Then the
minimal polynomial of A is

(A− I)(A− 2I) = A2 − 3A + 2I.

In these examples, you may have noticed that the degree of the minimal poly-
nomial was, at most, equal to the number of rows/columns of the matrix. Even
though the examples were simple, this turns out to always be the case.

154

Theorem: Given a matrix a real valued square matrix A ∈ Rm×m, the degree
of the minimum polynomial nA is most equal to m.

Using minimal polynomials, we can show why a Krylov subspace Kn(A,v) is
a good choice for a subspace to form our approximations from. If p(A) =
α0I + α1A + · · ·+ αn−1A

nA−1 + AnA then we can write

I = − 1

α0

(
α1A + · · ·+ αnA−1A

nA−1 + AnA
)

= − 1

α0

nA∑
i=1

αiA
i,

⇒ A−1 = − 1

α0

(
α1I + · · ·+ αnA−1A

nA−2 + AnA−1
)

= − 1

α0

nA−1∑
i=0

αi+1A
i,

which implies that the true solution to Ax = b can be written as the linear
combination:

x = A−1b = − 1

α0

nA−1∑
i=0

αi+1A
ib. (6.76)

This shows that the Krylov subspace KnA(A,b) (i.e., the one based on the ma-
trix A but also on the vector b) is a natural basis over which one can span the
true solution x to Ax = b.

It can be demonstrated – though we will not prove it – that the GMRES al-
gorithm will converge to x to within high accuracy for n ≤ m when exact
arithmetic is being used. However, in some cases, the algorithm might give the
exact solution for n � m. This can happen when the degree of the minimal
polynomial with respect to the specific vector b (denoted as pb(A)) is
smaller than the degree of the minimal polynomial, p(A).

Definition: The minimal polynomial of A with respect to the vector
b, written as pb(A), is defined as the unique monic polynomial of least degree
nb such that pb(A)b = 0, i.e.,

pb(A) = (β0I + β1A + · · ·+ Anb) b = 0.

By construction, it should be clear that the degree nb of pb(A) is always less
than or equal to the degree of p(A). We can then write

x = − 1

β0

nb−1∑
i=0

βi+1A
ib, (6.77)

and we see that x can be found exactly by minimizing ||b−Ax||2 over Knb
only,

instead of over the whole space. If nb � m, the subspace Knb
has a very low

dimension, and the GMRES algorithm becomes extremely efficient.

4.2. Faux-GMRES

The considerations of the previous section suggest the construction of the fol-
lowing algorithm:

155

Algorithm: Faux-GMRES Algorithm:

Select a value of n ≤ m
Compute Kn = [b|Ab|, . . . , |An−1b]
Find c that minimizes ‖b−AKnc‖2
xn = Knc

In theory, if n = nA or n = nb, this should be guaranteed to yield the true
solution, and the hope is that one may actually obtain a very good approxima-
tion to the true solution for some n� m. In practice, though, because of floating
point arithmetic, this turns out to be a very unstable numerical algorithm be-
cause vectors Aib become more and more parallel to the eigenvector associated
with the largest eigenvalue (this is the power iteration method!). To make the
algorithm more stable, we seek to create an orthonormal basis of vectors for the
Krylov subspace. This process is referred to as Arnoldi’s Method.

4.3. Arnoldi’s Method

Our goal until now has been to minimize ‖b−Axn‖2 where xn ∈ Kn(A,b). After
forming the matrix Kn we can restate our goal to be to minimize ‖b−AKnc‖2.
The problem with this plan is that Kn becomes increasingly poorly conditioned
as n grows larger, so the error on c becomes too large to be a useful algorithm.

On the other hand, if we can orthogonalize the columns of Kn into a new matrix
Qn, then we can write xn = Qny and then solve ‖b−AQny‖2 without having to
deal with a poorly conditioned matrix. Unfortunately, it isn’t as straightforward
as just orthogonalizing the vectors of Kn because, as n gets larger, the vectors
become too close to parallel to each other, and thus standard orthogonalization
techniques would fail to be reliable. To fix our problem we need to develop a
technique to orthogonalize the vectors of Kn as each column is being formed
as opposed to after all the columns have been formed. This is where a little
ingenuity is required.

Let’s take a little detour and first recall the Hessenberg form of a matrix A,

A = QHQT or equivalently AQ = QH (6.78)

where Q is an m ×m orthogonal matrix, and H is the Hessenberg form of A
(we already studied how to obtain Q in Chapter 4). If we write this equation in
terms of its column vectors, then we have

[Aq1|, . . . , |Aqn−1|Aqn|, . . . , |Aqm] = [Qh1|, . . . , |Qhn|Qhn+1|, . . . , |Qhm]
(6.79)

Let Qn be the matrix that contains the first n columns of Q, and let Hn denote
the matrix that contains the first n+1 rows and n columns of H. The ingenuity
we need to solve our problem is found by noting that

AQn = Qn+1Hn (6.80)

156

Proof: The first n columns of AQ are

[Aq1|Aq2|, . . . , |Aqn] = [Qh1|Qh2|, . . . , |Qhn] ,

which can be rewritten as the following system of equations:

Aq1 = q1h11 + q2h21

Aq2 = q1h12 + q2h22 + q3h32

...

Aqn =
n+1∑
i=1

qihin

since the entries hi are zero for j > i+ 1. This is then in the form of (6.80). �

We can now use this to construct the next vector qn+1 given knowledge of
the previous ones. Indeed if we solve for the last qi term for each equation we
have

q2 =
Aq1 − q1h11

h21

q3 =
Aq2 − q1h12 − q2h22

h32

...

qn+1 =
Aqn −

∑n
i=1 qihin

hn+1,n

where the denominators are found simply by normalization of the vectors qj ,

namely hj+1,j = ‖Aqj −
∑j

i=1 qihij‖2 for j = 1, . . . , n. If we focus on the first
of the equations above, we can see that if we want q2 to be orthonormal to q1

then we need to multiply both sides by qT1 and set this to zero:

qT1 q2 =
qT1 Aq1 − qT1 q1h11

h21

⇒ 0 = qT1 Aq1 − qT1 q1h11

⇒ h11 = qT1 Aq1

since q1 is normalized. We can generalize this to obtain the conditions required
for qn+1 to be orthogonal to all qk with k ≤ n:

qTk qn+1 =
qTkAqn −

∑n
i=1 qTk qihin

hn+1,n

⇒ 0 = qTkAqn −
n∑
i=1

qTk qihin = qTkAqn − qTk qkhkn

⇒ hkn =
qTkAqn

qTk qk
= qTkAqn

157

where we have used the fact that the vectors qk for k = 1..n are already mutu-
ally orthogonal and normalized.

We are now equipped to write the Arnoldi Algorithm:

Algorithm: Arnoldi Algorithm (Gram-Schmidt version):

Choose a vector q1 such that ‖q1‖2 = 1
do j = 1 to n

do i = 1 to j
hij = qTi Aqj

enddo
qj+1 = Aqj −

∑j
i=1 hijqi

hj+1,j = ‖qj+1‖2
if hj+1,j = 0 then stop
if j < n, then qj+1 =

qj+1

hj+1,j

end do

Recall that the problem with the Faux-GMRES algorithm was that the ma-
trix Kn was too poorly conditioned to use when we tried to solve our Least
Squares problem. With the Arnoldi Algorithm we fix this by replacing Kn with
the orthogonal matrix Qn. Please notice that if you compare the Arnoldi Algo-
rithm to the Gram-Schmidt orthogonalization process, then you’ll see that the
steps are nearly identical. The big difference between them is that in Arnloldi’s
Algorithm we start with one vector, q1, and then create qi+1 from qi instead
of iterating over a known basis like with the Gram-Schmidt orthogonalization
scheme.

Before continuing we need to address the fact that it is not clear that the col-
umn space of Qn is the same as the column space of Kn. Fortunately our next
theorem will address this for us.

Theorem: Assuming that the Arnoldi Algorithm does not stop before the n-th
step. Then the vectors q1,q2, . . . ,qn form an orthonormal basis of the Krylov
subspace Kn(A,q1).

Proof: The vectors qj for j = 1, 2, . . . , n are orthonormal by construction. We
will show they span Kn(A,q1) by showing that each qj can be expressed as a
polynomial of A of degree j−1, i.e. qj = pj−1(A)q1 where pj−1 is a polynomial
of degree j − 1. We will accomplish this using strong induction.

For the base case note that q1 = p0(A)q1 where p0(A) = I. Now assume that
qj = pj−1(A)q1 for all integers less than j. Consider qj+1. Note that

hj+1,jqj+1 = Aqj −
n∑
i=1

hijqi = Apj−1(A)q1 −
j∑
i=1

hijpi−1(A)q1

158

Since Apj−1(A)q1 is a polynomial of degree j then we have demonstrated that
qj+1 can be expressed as a polynomial of degree j. �

Finally, note that for numerical stability, we shouldn’t use the standard Gram-
Schmidt algorithm. Instead we should consider more numerically stable orthog-
onalization processes such as the modified Gram-Schmidt.

Algorithm: Arnoldi Algorithm (Modified Gram-Schmidt version):

Choose a vector q1 such that ‖q1‖2 = 1
do j = 1 to n:

qj+1 = Aqj
do i = 1 to j

hij = qTj+1qi
qj+1 = qj+1 − hijqi

enddo
hj+1,j = ‖qj+1‖2
If hj+1,j = 0 then stop
if j < n, then qj+1 =

qj+1

hj+1,j

enddo

One final note: up until now, we have always used the vector b to create the
Krylov subspace. However, moving forward, it will be desirable to choose our
own vector. To do so, we will pick a vector x0 which we believe is a good
guess for the solution to Ax = b. With our initial guess we then create the
Krylov subspace Kn(A, r0) where r0 = b −Ax0. So now, instead of minimiz-
ing ‖b −AQny‖2 we will instead be minimizing ‖b −A(x0 + Qny)‖2 and our
solution xn will be given by xn = x0 + Qny.

4.4. GMRES Algorithm

Now that we know how to construct an orthogonal basis for the Krylov subspace
we have everything we need to solve the Least Squares problem in a stable
way. However, there is one more improvement we can make to our algorithm.
Using the identities we’ve demonstrated earlier we are going to make minimizing
‖b−Axn‖2 less expensive. Recall that

AQn = Qn+1Hn

using this allows us to write

‖b−Axn‖2 = ‖b−A(x0 + Qny)‖2
= ‖r0 −AQny‖2
= ‖βq1 −Qn+1Hny‖2 where q1 :=

r0

β
and β := ‖r0‖

= ‖βQT
n+1q1 −QT

n+1Qn+1Hny‖2
= ‖βe1 −Hny‖2

159

where, in the second to last step, we have used the fact that ‖b − Axn‖2 =
‖QT

n+1(b−Axn)‖2 since Qn+1 is an orthonormal matrix. The minimizer for yn
is now much less expensive to compute since it requires solving the least squares
problem involving the (n+ 1)×n matrix Hn instead of the m×n matrix AQn.
With this we can finally write the GMRES algorithm.

Algorithm: GMRES Algorithm:

Select n
r0 = b−Ax0, β = ‖r0‖2, q1 = r0/β
Call the Arnoldi algorithm to generate:

(i) Qn

(ii) Hn from qi
Solve the Least Square problem βe1 −Hnyn = 0 for yn
xn = x0 + Qnyn

You may have noticed that this algorithm ends without knowing if we reached
a desirable level of accuracy. To fix this, we can simply add a tweak to the al-
gorithm above by implementing a “restart” by computing the error ‖b−Axn‖2
at the end of the algorithm and checking that it is less than a certain desired
accuracy. If it does, then we’re done. If it doesn’t, then we define x0 = xn from
the previous iteration and start over.

Algorithm: Restart GMRES Algorithm:
Select n
Select guess x0

r0 = b−Ax0, β = ‖r0‖2
do while β > desired accuracy

q1 = r0/β
Call the Arnoldi algorithm to generate:

(i) Qn

(ii) Hn from qi
Solve the Least Square problem βe1 −Hnyn = 0 for yn
x0 = x0 + Qnyn
r0 = b−Ax0

β = ‖r0‖2
end do

4.5. Convergence of GMRES

When it comes to convergence, there are certain matrices that will more quickly
converge to the correct solution than the general matrix. In particular, if A is
symmetric positive definite or if the symmetric part of A (the symmetric part
of A is defined as (AT + A)/2) is positive definite, then GMRES will converge
more quickly. It is also true that matrices with tightly clustered eigenvalues

160

centered away from the origin will also converge more quickly. When dealing
with matrices with slow convergence, preconditioning can be applied to speed
up the convergence.

