
Final Exam
AM213B

Kevin Silberberg

2025-06-09

1 Problem 1
Consider the Runge-Kutta (RK) method for solving 𝑢′ = 𝑓(𝑢, 𝑡):

𝑘1 = ℎ𝑓(𝑢𝑛 + 2𝑘1, 𝑡𝑛 + 2ℎ) (1)
𝑢𝑛+1 = 𝑢𝑛 + 𝑘1 (2)

1.1 Part 1
Derive the stability function 𝜙(𝑧) of the RK method.

1.1.1 Solution

Let us write out the butcher tableau for (1). This is an implicit 1-stage method.

A general 1-stage Runge-Kutta method has the form.1

𝑘1 = 𝑢𝑛 + ℎ𝑎11𝑓(𝑘1, 𝑡𝑛 + 𝑐1ℎ) (3)
𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑏1𝑓(𝑘1, 𝑡𝑛 + 𝑐1ℎ) (4)

thus we have that

𝑎11 = 2 (5)
𝑏1 = 1 (6)
𝑐1 = 2 (7)

and the butcher tableau for the method is

2 2
1 (8)

This satisfies the consistency requirements
1LeVeque (2007) page 126

1

𝑟
∑
𝑗=1

𝑎𝑖𝑗 = 𝑐𝑖 (9)

𝑟
∑
𝑗=1

𝑏𝑗 = 1 (10)

The stability function of an RK method is given by the following.2

𝜙(𝑧) = 1 + 𝑧b𝑇 (I − 𝑧A)−1 1 (11)

𝜙(𝑧) = 1 + 𝑧
1 − 2𝑧

(12)

1.2 Part 2
Is the RK method A-stable? Why?

1.2.1 Solution

An RK method is A-stable if its stability function satisfies

|𝜙(𝑧)| ≤ 1, whenever Re(𝑧) ≤ 0 (13)

where Re(𝑧) denotes the real part of the complex number 𝑧.

We need to prove that the stability function (12) satisfies (13).

Proof. first let us rewrite the stability function,

𝜙(𝑧) = 1 + 𝑧
1 − 2𝑧

(14)

= 1 − 2𝑧
1 − 2𝑧

+ 𝑧
1 − 2𝑧

(15)

= 1 − 𝑧
1 − 2𝑧

(16)

Let 𝑧 = 𝑎 + 𝑖𝑏 where 𝑎, 𝑏 ∈ ℝ, 𝑖 =
√

−1, and 𝑎 ≤ 0.

rewriting (16) in terms of 𝑎, 𝑏 and then computing the modulus we have,

𝜙(𝑎 + 𝑖𝑏) = 1 − 𝑎 − 𝑖𝑏
1 − 2𝑎 − 𝑖2𝑏

(17)

|𝜙(𝑎 + 𝑖𝑏)| = | 1 − 𝑎 − 𝑖𝑏
1 − 2𝑎 − 𝑖2𝑏

| (18)

= |1 − 𝑎 − 𝑖𝑏|
|1 − 2𝑎 − 𝑖2𝑏|

(19)

=
√(1 − 𝑎)2 + (−𝑏)2

√(1 − 2𝑎)2 + (−2𝑏)2
(20)

2Quarteroni, Sacco, and Saleri (2006) page 516

2

For A-stability, we simply need to show that the numerator is less than the denominator for all 𝑎, 𝑏 ∈ ℝ
where 𝑎 ≤ 0.

√(1 − 𝑎)2 + 𝑏2 ≤ √(1 − 2𝑎)2 + 4𝑏2 (21)

for all 𝑎 ≤ 0. Let us simplify and expand both sides.

1 − 2𝑎 + 𝑎2 + 𝑏2 ≤ 1 − 4𝑎 + 4𝑎2 + 4𝑏2 (22)
2𝑎 − 3𝑎2 ≤ 3𝑏2 (23)

𝑎(2 − 3𝑎) ≤ 3𝑏2 (24)

Notice that the RHS is always positive for all 𝑏 ∈ ℝ. Additionally the LHS is always negative for
all 𝑎 ≤ 0. Thus the inequality holds for all 𝑎, 𝑏 ∈ ℝ where 𝑎 ≤ 0 and the condition for A-stability is
satisfied.

We can conclude that the RK method (1) satisfies the condition for A-stability (13).

1.3 Part 3
Is the method L-stable? Why?

1.3.1 Solution

L-stability is a special case of A-stability. A method is said to be L-stable if it is both A-stable and the stability
function 𝜙(𝑧) → 0 as 𝑧 → ∞.

Let us compute the limit of the stability function as 𝑧 → ∞ to determine if the method is L-stable.

lim
𝑧→∞

1 − 𝑧
1 − 2𝑧

= lim
𝑧→∞

𝑑
𝑑𝑧 (1 − 𝑧)
𝑑
𝑑𝑧 (1 − 2𝑧)

(25)

= −1
−2

(26)

= 1
2

(27)

thus the method is not L-stable.

2 Problem 2
Consider the two linear multi-step methods (LMMs) for solving 𝑢′ = 𝑓(𝑢, 𝑡).

𝑢𝑛+2 − 3
2

𝑢𝑛+1 + 1
2

𝑢𝑛 = ℎ𝑓(𝑢𝑛+1, 𝑡𝑛+1) (28)

𝑢𝑛+2 + 𝑢𝑛+1 − 2𝑢𝑛 = 3ℎ𝑓(𝑢𝑛+2, 𝑡𝑛+2) (29)

2.1 Part 1
For each method, find whether or not it is consistent.

3

2.1.1 Solution

A linear multi-step method is said to be consistent if 𝜏(ℎ) → 0 as ℎ → 0. Where 𝜏(ℎ) = max𝑛 |𝜏𝑛(ℎ)| and 𝜏𝑛 is
the local truncation error of computing the solution from time 𝑡𝑛 → 𝑡𝑛+1. More over, if 𝜏(ℎ) = 𝑂(ℎ𝑞), for some
𝑞 ≥ 1, then the method is said to have order 𝑞.3

Let us find the local truncation error (LTE) for the method (28).

We can find the LTE of the method by considering the difference between the exact solution and the approxiamte
solution computed by the method.

𝜏(ℎ) = 𝑢(𝑡𝑛+2) − 3
2

𝑢(𝑡𝑛+1) + 1
2

𝑢(𝑡𝑛) − (𝑢𝑛+2 − 3
2

𝑢𝑛+1 + 1
2

𝑢𝑛) (30)

Notice that we can center all the terms about the point 𝑡𝑛+1 by offsetting the time step ℎ such that

𝑡𝑛+2 → 𝑡𝑛+1 + ℎ (31)
𝑡𝑛 → 𝑡𝑛+1 − ℎ (32)

Let us taylor expand the exact solution about the point 𝑡𝑛+1 .

We use the short hand notation:

𝑢(𝑡𝑛+1) = 𝑢 𝑑𝑚

𝑑𝑡𝑚 (𝑢(𝑡𝑛+1)) = 𝑢(𝑛) 𝑓(𝑢(𝑡𝑛+1), 𝑡𝑛+1) = 𝑓 (33)

𝑢(𝑡𝑛+1 + ℎ) = 𝑢 + ℎ𝑢(1) + ℎ2

2!
𝑢(2) + 𝑂(ℎ3) (34)

𝑢(𝑡𝑛+1) = 𝑢 (35)

𝑢(𝑡𝑛+1 − ℎ) = 𝑢 − ℎ𝑢(1) + ℎ2

2!
𝑢(2) + 𝑂(ℎ3) (36)

𝑢(𝑡𝑛+2) − 3
2

𝑢(𝑡𝑛+1) + 1
2

𝑢(𝑡𝑛) = ℎ
2

𝑢(1) + 3ℎ2

4
𝑢(2) + 𝑂(ℎ3) (37)

Recalling that for the general ODE 𝑢(𝑛) = 𝑓 (𝑛−1), the LTE for (28) is thus

𝜏(ℎ) = ℎ
2

𝑢(1) + 3ℎ2

4
𝑢(2) − ℎ𝑢(1) + 𝑂(ℎ3) (38)

= −ℎ
2

𝑢(1) + 3ℎ2

4
𝑢(2) + 𝑂(ℎ3) (39)

= 𝑂(ℎ) (40)

Thus the method (28) is consistent with order 1.

Let us find the (LTE) for the method (29).

We need to compute the taylor expansion of 𝑓(𝑢𝑛+2, 𝑡𝑛+2) centered at 𝑡𝑛+1.
3Quarteroni, Sacco, and Saleri (2006) page 489

4

𝑓(𝑢(𝑡𝑛+1 + ℎ), 𝑡𝑛+1 + ℎ) = 𝑓 + ℎ𝑓 (1) + ℎ2

2
𝑓 (2) + 𝑂(ℎ3) (41)

Using the same notation and results computed above the LTE is thus,

𝜏(ℎ) = 𝑢 − 2𝑢 + 𝑢 + ℎ𝑢(1) + 2ℎ𝑢(1) + ℎ2

2
𝑢(2) − ℎ2𝑢(2) + 𝑂(ℎ3) − 3ℎ(𝑓 + ℎ𝑓 (1) + ℎ2

2
𝑓 (2)) (42)

= 3ℎ𝑢(1) − ℎ2

2
𝑢(2) − 3ℎ𝑢(1) − 3ℎ2𝑢(2) − 3ℎ3

2
𝑢(3) + 𝑂(ℎ4) (43)

= 𝑂(ℎ2) (44)

Thus the method (29) is consistent with order 2.

2.2 Part 2
For each method, find whether or not it is zero-stable.

2.2.1 Solution

An LMM is zero-stable if and only if it satisfies the following root-condition,

for a numerical method of the form

𝑞

∑
𝑗=0

𝛼𝑗𝑢𝑛+𝑗 = ℎ
𝑞

∑
𝑗=0

𝛽𝑗𝑓(𝑢𝑛+𝑗, 𝑡𝑛+𝑗) (45)

the zeros of the characteristic polynomial

𝜌(𝑧) =
𝑞

∑
𝑗=0

𝛼𝑗𝑧𝑗 (46)

are within the unit circle, and those of modulus one are simple.

2.2.1.1 Method LMM1

Let us find the characteristic polynomial 𝜌(𝑧) of the method (28).

𝛼0 = 1
2

𝛽0 = 0 (47)

𝛼1 = −3
2

𝛽1 = 1 (48)

𝛼2 = 1 𝛽2 = 0 (49)

thus the characteristic polynomial is

𝜌(𝑧) = 𝑧2 − 3
2

𝑧 + 1
2

(50)

5

the roots of which are,

𝑧2 − 3
2

𝑧 + 1
2

= 0 (51)

𝑧 =
3
2 ± √ 9

4 − 2
2

(52)

=
3
2 ± 1

2
2

(53)

= 3
4

± 1
4

(54)

thus the roots of the characteristic polynomial are

𝑧1 = 1 (55)

𝑧2 = 1
2

(56)

Thus the method (28) is zero-stable.

2.2.1.2 Method LMM2

Let us find the characteristic polynomial 𝜌(𝑧) of the method (29).

𝛼0 = −2 𝛽0 = 0 (57)
𝛼1 = 1 𝛽1 = 0 (58)
𝛼2 = 1 𝛽2 = 3 (59)

thus the characteristic polynomial is

𝜌(𝑧) = 𝑧2 + 𝑧 − 2 (60)

the roots of which are

(𝑧 − 1)(𝑧 + 2) = 0 (61)
𝑧1 = −2 (62)
𝑧2 = 1 (63)

Thus, because one of the roots (𝑧1 = −2) lie outside of the unit disk, the method (29) is not zero-stable.

3 Problem 3
Consider the method for solving the PDE

𝑢𝑡 + 𝛼𝑢𝑥 = 0 (64)

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 − 𝛼𝑟(𝑢𝑛+1
𝑖 − 𝑢𝑛+1

𝑖−1) 𝑟 = Δ𝑡
Δ𝑥

(65)

6

3.1 Part 1
Find the local truncation error (LTE) of the method.

3.1.1 Solution

The local truncation error of a numerical scheme is the residual that is generated by pretending the exact solution
to satisfy the numerical method itself.4 To this end, let us put the method (65) in the form of (64).

𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖 + 𝛼 Δ𝑡
Δ𝑥

(𝑢𝑛+1
𝑖 − 𝑢𝑛+1

𝑖−1) = 0 (66)

𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖
Δ𝑡

+ 𝛼𝑢𝑛+1
𝑖 − 𝑢𝑛+1

𝑖−1
Δ𝑥

= 0 (67)

and now we formulate the truncation error at (𝑥𝑗, 𝑡𝑛) as the following,

𝜏𝑛
𝑖 = 𝑢(𝑥𝑖, 𝑡𝑛+1) − 𝑢(𝑥𝑖, 𝑡𝑛)

Δ𝑡
+ 𝛼𝑢(𝑥𝑖, 𝑡𝑛+1) − 𝑢(𝑥𝑖−1, 𝑡𝑛+1)

Δ𝑥
(68)

Let us taylor series expand the terms at the point (𝑥𝑗, 𝑡𝑛),

𝑢(𝑥𝑖, 𝑡𝑛+1) = 𝑢 + Δ𝑡𝑢𝑡 + Δ𝑡2

2
𝑢𝑡𝑡 + 𝑂(Δ𝑡3) (69)

𝑢(𝑥𝑖−1, 𝑡𝑛+1) = 𝑢 − Δ𝑥𝑢𝑥 + Δ𝑡𝑢𝑡 + Δ𝑥2

2
𝑢𝑥𝑥 − Δ𝑥Δ𝑡𝑢𝑥𝑡 + Δ𝑡2

2
𝑢𝑡𝑡 + 𝑂(Δ𝑥3) + 𝑂(Δ𝑥Δ𝑡2) + 𝑂(Δ𝑥2Δ𝑡) + 𝑂(Δ𝑡3)

(70)

plugging this into (68) we have

𝜏𝑛
𝑖 = 1

Δ𝑡
(𝑢 + Δ𝑡𝑢𝑡 + Δ𝑡2

2
𝑢𝑡𝑡 + 𝑂(Δ𝑡3) − 𝑢) (71)

+ 𝛼
Δ𝑥

(𝑢 + Δ𝑡𝑢𝑡 + Δ𝑡2

2
𝑢𝑡𝑡 − 𝑢 + Δ𝑥𝑢𝑥 − Δ𝑡𝑢𝑡 − Δ𝑥2

2
𝑢𝑥𝑥 + Δ𝑥Δ𝑡𝑢𝑥𝑡 − Δ𝑡2

2
𝑢𝑡𝑡 + ⋯) (72)

= 𝑢𝑡 + Δ𝑡
2

𝑢𝑡𝑡 + 𝛼 (𝑢𝑥 − Δ𝑥
2

𝑢𝑥𝑥 + Δ𝑡𝑢𝑥𝑡) + 𝑂(Δ𝑡2) + 𝑂(Δ𝑥2) (73)

= 𝑢𝑡 + 𝛼𝑢𝑥 + Δ𝑡
2

𝑢𝑡𝑡 + 𝛼Δ𝑥
2

𝑢𝑥𝑥 + 𝛼Δ𝑡𝑢𝑥𝑡 + 𝑂(Δ𝑡2) + 𝑂(Δ𝑥2) (74)

Since 𝑢 satisfies the PDE 𝑢𝑡 + 𝛼𝑢𝑥 = 0, we have:

𝜏𝑛
𝑖 = Δ𝑡

2
𝑢𝑡𝑡 − 𝛼Δ𝑥

2
𝑢𝑥𝑥 + 𝛼Δ𝑡𝑢𝑥𝑡 + 𝑂(Δ𝑡2) + 𝑂(Δ𝑥2) (75)

= 𝑂(Δ𝑥 + Δ𝑡) (76)

Thus the method is first-order accurate in both space and time.
4Quarteroni, Sacco, and Saleri (2006) page 605

7

4 Problem 4
Consider the following Initial Boundary Value Problem

{𝑢𝑡 + 𝛼𝑢𝑥 = 0
𝑢(𝑥, 0) = 𝑓(𝑥), 𝑢(−0.5, 𝑡) = 𝑔(𝑡)

(77)

where 𝑥 ∈ (−0.5, 2.5), 𝑡 ≥ 0, and 𝛼 = 1.5.

The exact solution is expressed in terms of 𝑓(𝑥) and 𝑔(𝑡) as

𝑢exact(𝑥, 𝑡) = {𝑓(𝑥 − 𝛼𝑡), 𝑥 − 𝛼𝑡 > −0.5
𝑔(𝑡 − 𝑥+0.5

𝛼), 𝑥 − 𝛼𝑡 ≤ −0.5
(78)

Follow the pseudocode in lecture notes to implement the 3 methods below:

• upwind method
• lax-friedrichs method
• lax-wendroff method

The numerical grid is defined with

Δ𝑥 = 3
𝑁

𝑥𝑖 = −0.5 + 𝑖Δ𝑥 0 ≤ 𝑖 ≤ 𝑁 (79)

(77) gives a boundary condition only at 𝑥0 = −0.5. In the Lax-Friedrich and Lax-Wendroff methods, we need an
artificial boundary condition at 𝑥𝑁 = 2.5. In this problem, we use the exact solution.

The artificial boundary condition:

𝑢𝑛
𝑁 = 𝑢exact(𝑥𝑁, 𝑡𝑛) (80)

Use the exact solution to calculate the error of each method.

𝐸𝑛
𝑖 = |𝑢𝑛

𝑖 − 𝑢exact(𝑥𝑖,𝑡𝑛)| (81)

Use the 3 methods to solve (77) with the initial condition and boundary condition given below:

𝑓(𝑥) = − cos(𝜋𝑥) 𝑔(𝑡) = sin(𝛼𝜋𝑡) 𝛼 = 1.5 (82)

In simulations, use 𝑁 = 300 and Δ𝑡 = 𝑟Δ𝑥 with 𝑟 = 0.3, 0.6.

Note: In the CFL condition 𝑟 is constrained by (𝑎𝑟) ≤ 1 where 𝛼 = 1.5

4.1 Part 1
Plot errors vs x of the 3 methods at 𝑡 = 1.08 in one figure. Plot two figures, one for 𝑟 = 0.3 and the other for
𝑟 = 0.6. Use log scale for errors.

4.1.1 Solution

8

(a) 𝑡 = 1.08, 𝑟 = 0.3

(b) 𝑡 = 1.08, 𝑟 = 0.6

Figure 1: Plot of the log error vs x for the methods upwind (blue), lax-friedrich (yellow), and lax-wendroff
(green) at the time step 𝑡 = 1.08 for 𝑟 = 0.3 (top) and 𝑟 = 0.6 (bottom).

9

4.2 Part 2
Which method has the smallest error? Which value of 𝑟 yields a smaller error?

4.2.1 Solution

The method with the smallest error is the Lax-Wendroff method. This makes sense because the method is second
order accurate for space and time given that the CFL condition |𝑎𝑟 ≤ 1| is met.

𝑟 = 0.6 produces smaller error accross all the methods (seen by a downward shift in the magnitude of the error
from Figure 1a to Figure 1b).

4.3 Code

using GLMakie

initial condition

f(x, t, α) = -cos(π*x)

boundary condition

g(x, t, α) = sin(α*π*t)

exact solution

u_exact(x, t, α) = (x-α*t) > -0.5 ? f(x-α*t, t, α) : g(x, t-(x+0.5)/α, α)

function upwind(f::Function, g::Function, u_exact::Function, params::Tuple)

simulation parameters

r, α, N, x0, xf, t0, tf, Δx, Δt = params

Nt = ceil(Int, (tf-t0)/Δt)

spatial and temporal grids

xs = [x0 + i*Δx for i in 0:N]

ts = [t0 + n*Δt for n in 0:Nt]

solution 2D Array (space, time)

u = zeros(N+1, Nt+1)

initial condition

u[:, 1] = f.(xs, t0, α)

loop in time

for n in 1:Nt

enforce the left boundary condition

u[1, n+1] = g(xs[1], ts[n+1], α)

loop in space

for i in 2:N+1

upwind method

u[i, n+1] = u[i, n] - α * r * (u[i, n] - u[i-1, n])

end

end

return u, xs, ts

end

function lax_friedrich(f::Function, g::Function, u_exact::Function, params::Tuple)

simulation parameters

r, α, N, x0, xf, t0, tf, Δx, Δt = params

Nt = ceil(Int, (tf-t0)/Δt)

spatial and temporal grids

xs = [x0 + i*Δx for i in 0:N]

ts = [t0 + n*Δt for n in 0:Nt]

10

solution 2D Array (space, time)

u = zeros(N+1, Nt+1)

initial condition

u[:, 1] = f.(xs, t0, α)

loop in time

for n in 1:Nt

enforce the left boundary condition

u[1, n+1] = g(xs[1], ts[n+1], α)

loop in space

for i in 2:N

u[i, n+1] = 0.5 * (

u[i+1, n] + u[i-1, n] -

α*r*(u[i+1, n] - u[i-1, n])

)

end

artificial boundary condition at the right

u[end, n+1] = u_exact(xs[end], ts[n+1], α)

end

return u, xs, ts

end

function lax_wendroff(f::Function, g::Function, u_exact::Function, params::Tuple)

simulation parameters

r, α, N, x0, xf, t0, tf, Δx, Δt = params

Nt = ceil(Int, (tf-t0)/Δt)

spatial and temporal grids

xs = [x0 + i*Δx for i in 0:N]

ts = [t0 + n*Δt for n in 0:Nt]

solution 2D Array (space, time)

u = zeros(N+1, Nt+1)

initial condition

u[:, 1] = f.(xs, t0, α)

loop in time

for n in 1:Nt

enforce the left boundary condition

u[1, n+1] = g(xs[1], ts[n+1], α)

loop in space

for i in 2:N

u[i, n+1] = u[i, n] +

0.5 * (

(α*r)^2 * (u[i+1, n] - 2.0*u[i, n] + u[i-1, n]) -

α*r * (u[i+1, n] - u[i-1, n])

)

end

artificial boundary condition at the right

u[end, n+1] = u_exact(xs[end], ts[n+1], α)

end

return u, xs, ts

end

main driver code

function main()

simulation parameters

r_values = (0.3, 0.6)

α = 1.5

11

N = 300

x0, xf = (-0.5, 2.5)

t0, tf = (0.0, 1.08)

Δx = (xf - x0)/N

figure titles and save strings

titles = [

L"Numerical Error for Solution to IBVP at $t = 1.08$ and $r = 0.3$",

L"Numerical Error for Solution to IBVP at $t = 1.08$ and $r = 0.6$"

]

saves = [

"problem4r3.png",

"problem4r6.png"

]

loop through r values

for i in eachindex(r_values)

r = r_values[i]

Δt = r*Δx

verify CFL conditions

@assert α*r ≤ 1.0 "CFL condition is not met for r = $r."

set up figure (part1)

fig = Figure()

ax = Axis(

fig[1, 1],

title = titles[i],

xlabel= L"x",

ylabel= L"\log(\text{error})",

yscale = log10,

limits = (nothing, (1e-7, 0.5))

)

params = (r, α, N, x0, xf, t0, tf, Δx, Δt)

u, xs, ts = upwind(f, g, u_exact, params)

u_star = u_exact.(xs, ts[end], α)

error = abs.(u[:, end] - u_star)

lines!(ax, xs, error, label = L"\text{Upwind}")

u, xs, ts = lax_friedrich(f, g, u_exact, params)

u_star = u_exact.(xs, ts[end], α)

error = abs.(u[:, end] - u_star)

lines!(ax, xs, error, label = L"\text{Lax-Friedrich}")

u, xs, ts = lax_wendroff(f, g, u_exact, params)

u_star = u_exact.(xs, ts[end], α)

error = abs.(u[:, end] - u_star)

lines!(ax, xs, error, label = L"\text{Lax-Wendroff}")

Legend(fig[1, 2], ax)

save(saves[i], fig)

end

end

main()

12

References
LeVeque, Randall J. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations. Society

for Industrial; Applied Mathematics. https://doi.org/10.1137/1.9780898717839.
Quarteroni, Alfio, Riccardo Sacco, and Fausto Saleri. 2006. Numerical Mathematics (Texts in Applied Mathe-

matics). Berlin, Heidelberg: Springer-Verlag.

13

https://doi.org/10.1137/1.9780898717839

	Problem 1
	Part 1
	Solution

	Part 2
	Solution

	Part 3
	Solution

	Problem 2
	Part 1
	Solution

	Part 2
	Solution

	Problem 3
	Part 1
	Solution

	Problem 4
	Part 1
	Solution

	Part 2
	Solution

	Code

	References

