
Homework 1
AM213B

Kevin Silberberg

2025-04-09

Problem 1
Suppose 𝐸𝑛 satisfies the recursive inequality

{𝐸𝑛+1 ≤ (1 + 𝐶ℎ) 𝐸𝑛 + ℎ3 for 𝑛 ≥ 0
𝐸0 = 0

(1)

where 𝐶 > 0 is a constant independent of ℎ and 𝑛.

Derive that

𝐸𝑁 ≤ 𝑒𝐶𝑇 − 1
𝐶

ℎ2 for 𝑁ℎ ≤ 𝑇 (2)

Solution

Starting from (1) we have:

𝐸𝑛+1 ≤ (1 + 𝐶ℎ) 𝐸𝑛 + ℎ3 (3)
𝐸𝑛+1

ℎ3 ≤ (1 + 𝐶ℎ) 𝐸𝑛 + ℎ3

ℎ3 (4)

𝐸𝑛+1
ℎ3 ≤ (1 + 𝐶ℎ) 𝐸𝑛

ℎ3 + 1 (5)

Let Λ𝑛 = 𝐸𝑛
ℎ3 such that (5) becomes

{Λ𝑛+1 ≤ (1 + 𝐶ℎ) Λ𝑛 + 1 for 𝑛 ≥ 0
Λ0 = 0

(6)

Let us solve the first 4 iterates of the recurrance relation.

1



for 𝑛 = 0 ∶ (7)
Λ0 = 0 (8)

for 𝑛 = 1 ∶ (9)
Λ1 ≤ (1 + 𝐶ℎ) Λ0 + 1 = 1 (10)

for 𝑛 = 2 ∶ (11)
Λ2 ≤ (1 + 𝐶ℎ) Λ1 + 1 = 2 + 𝐶ℎ (12)

for 𝑛 = 3 ∶ (13)
Λ3 ≤ (1 + 𝐶ℎ) (2 + 𝐶ℎ) + 1 = 𝐶2ℎ2 + 3𝐶ℎ + 3 (14)

This suggests that Λ𝑛 can be represented by the following series:

Λ𝑛 ≤ (1 + 𝐶ℎ)𝑛 − 1
𝐶ℎ

(15)

We need to prove that the series (15) is equivalent to the recurrance relation (6) for all 𝑛 ≥ 0

Let us verify that the first few iterates of the series match that of the recurrance relation. This will serve as
our bases case in the proof by induction.

for 𝑛 = 0 ∶ (16)

Λ0 ≤ (1 + 𝐶ℎ)0 − 1
𝐶ℎ

= 1 − 1
𝐶ℎ

= 0 (17)

for 𝑛 = 1 ∶ (18)

Λ1 ≤ (1 + 𝐶ℎ) − 1
𝐶ℎ

= 𝐶ℎ
𝐶ℎ

= 1 (19)

for 𝑛 = 2 ∶ (20)

Λ2 ≤ (1 + 𝐶ℎ)2 − 1
𝐶ℎ

= 𝐶2ℎ2 + 2𝐶ℎ
𝐶ℎ

= 2 + 𝐶ℎ (21)

For the inductive step we need to show that the recurrance relation representation is equivalent to the series
representation. We can do this by simply plugging in the series representation into the 𝑛 + 1 case and see if
they are equivalent.

starting from the recurrance relation Λ𝑛+1 and plugging in the proposed series representation Λ𝑛

Λ𝑛+1 ≤ (1 + 𝐶ℎ) Λ𝑛 + 1 (22)

≤ (1 + 𝐶ℎ) (1 + 𝐶ℎ)𝑛 − 1
𝐶ℎ

+ 1 (23)

≤ (1 + 𝐶ℎ)𝑛+1 − 1 − 𝐶ℎ
𝐶ℎ

+ 1 (24)

≤ (1 + 𝐶ℎ)𝑛+1

𝐶ℎ
− 1

𝐶ℎ
−
�
�
�
�>

0
𝐶ℎ
𝐶ℎ

+ 1 (25)

≤ (1 + 𝐶ℎ)𝑛+1 − 1
𝐶ℎ

(26)

2



Which is exactly equal to the original definition of the series representation of the recurrance relation.

Recall that Λ𝑛 = 𝐸𝑛
ℎ3 . Plugging this into the definition of (15) we have

𝐸𝑁
ℎ3 ≤ (1 + 𝐶ℎ)𝑁 − 1

𝐶ℎ
(27)

𝐸𝑁 ≤ (1 + 𝐶ℎ)𝑁 − 1
𝐶

ℎ2 (28)

We can express the value 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + ⋯, thus we have the inequality where 𝑥 > 0:

1 + 𝑥 ≤ 𝑒𝑥 (29)

Plugging in 𝑥 = 𝐶ℎ we have

1 + 𝐶ℎ ≤ 𝑒𝐶ℎ (30)

Since 𝐶 > 0 and ℎ > 0 and 𝑁 > 0 we can rewrite (28) as

𝐸𝑁 ≤ (1 + 𝐶ℎ)𝑁 − 1
𝐶

ℎ2 ≤ 𝑒𝐶ℎ𝑁 − 1
𝐶

ℎ2 (31)

𝐸𝑁 ≤ 𝑒𝐶ℎ𝑁 − 1
𝐶

ℎ2 (32)

Let 𝑁ℎ ≤ 𝑇 and we have arrived at our final derivation,

𝐸𝑁 ≤ 𝑒𝐶𝑇 − 1
𝐶

ℎ2 for 𝑁ℎ ≤ 𝑇 (33)

Problem 2
Use the composite trapezoidal rule and the composite Simpson’s rule, respectively, to approximate the integral

𝐼 = ∫
3

1
√2 + cos3(𝑥)𝑒sin (𝑥)𝑑𝑥 (34)

For each method, carry out simulations at a sequence of numerical resolutions:

𝑁 = 2𝑖 for 𝑖 = 2, 3, 4, ⋯ , 10

State and compare the numerical solutions of the two methods at 𝑁 = 210.

For each method, use the numerical results to do numerical error estimations.

For each method, plot the estimated error (absolute value) as a function of ℎ. Use log-log plot to accommodate
the wide range of ℎ and error.

Plot the two cureves in ONE figure to compare the performance of the two methods.

3



Solution

The composite trapezoidal rule uses a constant spline and applies the trapezoidal rule to each subinterval.
For 𝑛 + 1 equally spaced nodes:

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ ℎ [1

2
𝑓(𝑎) +

𝑛−1
∑
𝑖=1

𝑓(𝑎 + 𝑖ℎ) + 1
2

𝑓(𝑏)] (35)

where ℎ = 𝑏−𝑎
𝑛

The error for the composite trapezoidal rule is bounded by 1
12 (𝑏 − 𝑎)3 |𝑓(2)(𝜉)|

𝑛2 for some 𝜉 ∈ (𝑎, 𝑏).

The composite simpson’s rule uses a quadratic spline. For equally spaced nodes,

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈ ℎ

3
(𝑓(𝑥0) + 4

𝑛/2

∑
𝑖=1

𝑓(𝑥2𝑖−1) + 2
𝑛/2

∑
𝑖=2

𝑓(𝑥2𝑖−2) + 𝑓(𝑥𝑛)) (36)

The error of the composite simpson’s rule is boundedc by 1
180 (𝑏 − 𝑎)5 𝑓(4)(𝜉)

𝑛4 for some 𝜉 over an interval (𝑎, 𝑏).

Let us write two functions that implements the composite trapezoidal rule and the composite Simpson’s rule.
using StaticArrays

# the function we are interested in integrating

f(x::Float64) = sqrt(2 + cos(x)^3 * exp(sin(x)))

# the support of the function

support = SVector{2, Float64}(1.0, 3.0)

function trapz(func::Function, sup::SVector{2, Float64}, n::Int)

sum = 0.0

a, b = sup

h = (b-a)/n

# precompute the summation

for j in 1:n-1

sum += func(a + j*h)

end

return h/2.0 * (func(a) + 2.0*sum + func(b))

end

function simpsons(func::Function, sup::SVector{2, Float64}, n::Int)

a, b = sup

h = (b-a)/n

sum1 = 0.0

sum2 = 0.0

for i = 1:n/2

sum1 += func(a + (2*i - 1)*h)

end

for i = 1:n/2-1

sum2 += func(a + 2*i*h)

end

return h/3.0 * (func(a) + 4.0*sum1 + 2.0*sum2 + func(b))

end;

4



Let us approximate the integral for each method at spatial resolutions 𝑁 = 2𝑖 for 𝑖 = 2, 3, ⋯ , 10 and save the
data in a 9 × 2 matrix data structure where the rows correspond to each spatial resolutions and the columns
corespond to each method.
# spatial resolutions

r = [2^i for i in 2:10]

# data structure for storing approximate solutions

data = Matrix{Float64}(undef, 9, 2)

for i in eachindex(r)

data[i, 1] = trapz(f, support, r[i])

data[i, 2] = simpsons(f, support, r[i])

end

Let us print the results of the approximate integral for the trapezoidal and simpson’s method at spatial
resolution 𝑁 = 210.
println("Spatial resolution: N = $(r[end])")

println("Trapezoidal Method: $(data[end, 1])")

println("Simpson's Method: $(data[end, 2])")

println("Relative error: $(abs(data[end, 1] - data[end, 2]))")

Spatial resolution: N = 1024

Trapezoidal Method: 2.4988361220951703

Simpson's Method: 2.498835859563374

Relative error: 2.6253179630231216e-7

The numerical solutions for 𝑁 = 210 agree to within a relative error of approximately 10−7 using 𝑁 = 210

equally spaced grid spaces.

We would like to plot the global truncation error for each method at different spatial resolutions. The integral
has no analytical solution, so we use gauss kronrad-quadrature solver to solve the integral to machine precision
and use this as our true solution for the calculation of the absolute error.
using QuadGK

using GLMakie

# wrapper function for using quadgk

integ(x::Function, sup::SVector{2}) = quadgk(x, sup[1], sup[2]; atol=1e-16, rtol=1e-16)[1]

y_true = integ(f, support)

fig = Figure()

ax = Axis(fig[1, 1],

title = "numerical error for varying spatial resolution",

xscale = log10,

yscale = log10,

xlabel = L"$N$",

ylabel = L"$|y - y^*|$")

errors = abs.(y_true .- data)

scatterlines!(ax, r, errors[:, 1], label = "trapezoidal", color = :red, marker=:rect)

scatterlines!(ax, r, errors[:, 2], label = "simpson", color = :blue, marker=:rect)

Legend(fig[1, 2], ax, "composite method")

fig

5



Figure 1: log-log plot of the global truncation error for varying spatial resolution 𝑁 grid points for the
composite trapezoidal method in red, and the composite simpson’s method in blue.

Notice how in Figure 1 the slope of the line for each composite method corresponds to the order of the
method. Since the composite trapezoidal method is a second-order method and is bounded in error by 𝑂(ℎ2),
the error decreases proportionally to ℎ as ℎ → 0 or as 𝑛 → ∞. Since the plot is on a logarithmic scale, we
expect the slope of the line to be −2. The composite Simpson’s method is bounded in error by 𝑂(ℎ4), so we
expect the slope of the line as 𝑛 increases to be −4, which is precisely what we see in Figure 1.

Problem 3
Implement Newton’s method to solve the non-linear equation of 𝑥 given below.

𝑥 − 𝛼 + 𝛽 sinh (𝑥 − cos (𝑠 − 1)) = 0 (37)

Solve the equation for each value of 𝑠 = [0 ∶ 0.1 ∶ 20]. Use 𝛼 = 0.9 and 𝛽 = 50000.

Plot 𝑥 vs 𝑠 and cos (𝑠 − 1) vs 𝑠. Plot the two curves in ONE figure for comparison.

Hint: Look at the sample code on how to implement Newton’s method.

Solution

Newton’s method is a root finding algorithm defined by the following recurrance relation,

Given a function 𝑓, it’s derivative, 𝑓 ′, and an initial value 𝑥1, iteratively define

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘)
𝑓 ′(𝑥𝑘)

𝑘 = 1, 2, 3, ⋯ (38)

Let us write a code that implements newton’s method.

6



# newton's method central difference approximation

function newton(f::Function; x_init::Float64 = 1.0, maxiter = 100, h = 1e-8)

x_current = x_init

x_next = x_current

y = f(x_current)

Δx = Inf

k = 1

while (abs(Δx) > 10*eps()) && (abs(y) > 10*eps()) && (k < maxiter)

df = (f(x_current + h) - f(x_current - h)) / (2*h)

Δx = -y/df

x_next = x_current + Δx

k += 1

y = f(x_next)

x_current = x_next

end

x_current

end

newton (generic function with 1 method)

The above function takes in a function 𝑔(𝑥) and an optional keyword arguments x_init, the initial value with
default value 1, and maxiter with default argument set to 100 iterations. The algorithm continues until the
maximum number of iterations has been met, or the change in the previous step and the current step has
fallen below close to machine precision.

Let us plot the solution for (37) using newton’s method for varying 𝑠 against the value cos(𝑠 − 1) for all 𝑠.
# function we are interested in solving

g(x, α, β, s) = x - α + β*sinh(x - cos(s - 1))

# parameters

α = 0.9

β = 50000

r = collect(0:0.1:20)

# figure

fig = Figure()

ax = Axis(fig[1, 1], title = L"Newton's Method solutions for varying $s$", xlabel = L"$s$")

data = [newton(x->g(x, α, β, s)) for s in r]

scatterlines!(ax, r, data, label = L"$x$")

data = [cos(s - 1) for s in r]

scatterlines!(ax, r, data, label = L"$\cos{(s - 1)}$")

Legend(fig[1,2], ax, "y-axis")

fig

7



Figure 2: The solution 𝑥 in blue and the value 𝑐𝑜𝑠(𝑠 − 1) for the function at varying values of 𝑠.

In Figure 2 we can see that the value of cos(𝑠 − 1) and the value of the solution 𝑥 computed using newton’s
method are identical to machine precision.

Problem 4
Implement the Euler method and the backward Euler method to solve the IVP below.

{𝑢̇ = −𝜆 sinh (𝑢 − cos(𝑡 − 1)) 𝜆 = 106

𝑢(0) = 0
(39)

Part 1
For the Euler method, solve the IVP to 𝑇 = 2−10. Try ℎ = 2𝑛 ∀𝑛 ∈ {−18, −19, −20, ⋯}

At what time step size, the numerical solution remains bounded?

Plot one representative figure showing the behavior of numerical solution when the time step is not small
enough.

Plot another representative figure when the time step is small enough.

Solution

Let us write the explicit Euler Method.

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛) (40)

where ℎ = 𝑏−𝑎
𝑛 and 𝑛 is the number of time steps.

8



function euler(f::Function, u0::Float64, tspan::SVector{2, Float64}, h::Float64)

t0, tf = tspan

N = Int(floor((tf - t0)/h))

t = Vector{Float64}(undef, N+1)

u = Vector{Float64}(undef, N+1)

t[1] = t0

u[1] = u0

for i = 1:N

u[i+1] = u[i] + h * f(u[i], t[i])

t[i+1] = t[i] + h

end

return t, u

end

euler (generic function with 1 method)

Let us solve the IVP from 𝑇 = 0 to 𝑇 = 2−10 for varying temporal resolutions.
u̇ (u, t, λ) = -λ * sinh(u - cos(t - 1))

ts = SVector{2, Float64}(0.0, 2^(-10))

hs = [1/(2^18), 1/(2^19), 1/(2^20), 1/(2^21)]

lbs = [L"h = 2^{-18}", L"h = 2^{-19}", L"h = 2^{-20}", L"h = 2^{-21}"]

fig = Figure()

ax = Axis(

fig[1, 1],

title = "Bounded and Unbounded solutions for varying timestep h",

limits = ((0, 0.0001), (-6, 6))

)

for i in eachindex(hs)

h = hs[i]

t, u = euler((u, t) -> u̇ (u, t, 1e6), 0.0, ts, h)

lines!(ax, t, u, label = lbs[i])

end

Legend(fig[1, 2], ax)

fig

9



Figure 3: Plot of the Unbounded solutions at ℎ = 2−18 in blue and ℎ = 2−19 in yellow, and Bounded solutions
at ℎ = 2−20 in green and ℎ = 2−21 in pink

The numerical solution remains bounded for all ℎ > 220. You can clearly see this in Figure 3.

Part 2
For the backward Euler method, solve the IVP to 𝑇 = 10. Use Newton’s method to solve the non-linear
equation in each time step. Use ℎ = 0.1 in your simulations.

Plot the numerical solution vs 𝑡 for the backward Euler method.

Solution

The backward Euler Method is as follows:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛+1, 𝑡𝑛+1) (41)
𝑦𝑛+1 − ℎ𝑓(𝑦𝑛+1) − 𝑦𝑛 = 0 (42)

where we need to find the roots of the polynomial for equation (42).
function backwardEuler(f::Function, u0::Float64, tspan::SVector{2, Float64}, h::Float64)

t0, tf = tspan

N = Int(floor((tf-t0)/h))

t = Vector{Float64}(undef, N+1)

u = Vector{Float64}(undef, N+1)

t[1] = t0

u[1] = u0

for i = 1:N

t[i+1] = t[i] + h

u[i+1] = newton(x -> x - h*f(x, t[i+1]) - u[i], h = 1e-14)

10



end

return t, u

end

backwardEuler (generic function with 1 method)

Let us solve the IVP (39) using backward euler from 𝑇0 = 0 to 𝑇𝑓 = 10 using a temporal resolution of ℎ = 0.1.
ts = SVector{2, Float64}(0.0, 10.0)

h = 0.1

u0 = 0.0

t, u = backwardEuler((u, t) -> u̇ (u, t, 1e6), u0, ts, h)

fig = Figure()

ax = Axis(

fig[1, 1],

title = "Numerical solution vs t for the backward Euler method.",

xlabel = "t"

)

lines!(ax, t, u)

fig

Figure 4: Plot of the numerical solution in blue over time for 𝑡0 = 0 to 𝑡𝑓 = 10 for temporal resolution
ℎ = 0.1.

Problem 5
Implement the trapezoidal method to solve the IVP in Problem 4.

Use Newton’s method to solve the non-linear equation in each time step.

Part 1
Solve the IVP to 𝑇 = 10. Use ℎ = 0.1 in your simulations.

11



Plot the numerical solution vs 𝑡. Is the numerical solution bounded?

Do you observe any oscillation in the numerical solution with ℎ = 0.1?

Solution

The trapezoidal method for solving IVP’s is as follows:

𝑦𝑛+1 = 𝑦𝑛 + 1
2

ℎ (𝑓(𝑦𝑛, 𝑡𝑛) + 𝑓(𝑦𝑛+1, 𝑡𝑛+1)) (43)

Where we need to solve for the roots of the equation

1
2

ℎ (𝑓(𝑦𝑛, 𝑡𝑛) + 𝑓(𝑦𝑛+1, 𝑡𝑛+1)) − 𝑦𝑛+1 + 𝑦𝑛 = 0 (44)

in order to find the next time step 𝑦𝑛+1.

Let us Solve the IVP from 𝑇0 = 0 to 𝑇𝑓 = 10 and use temporal resolution ℎ = 0.1.
function trapezoidalMethod(f::Function, u0::Float64, tspan::SVector{2, Float64}, h::Float64)

t0, tf = tspan

N = Int(floor((tf - t0)/h))

t = Vector{Float64}(undef, N + 1)

u = Vector{Float64}(undef, N + 1)

t[1] = t0

u[1] = u0

for i = 1:N

t[i + 1] = t[i] + h

u[i+1] = newton(x->0.5*h*(f(u[i], t[i]) + f(x, t[i+1])) - x + u[i], h = 1e-14)

end

return t, u

end

t, u = trapezoidalMethod((u, t) -> u̇ (u, t, 1e6), u0, ts, h)

fig = Figure()

ax = Axis(

fig[1, 1],

title = "Numerical solution to the IVP with trapezoidal method",

xlabel = "t"

)

lines!(ax, t, u, label = L"h = 0.1")

Legend(fig[1, 2], ax)

fig

12



Figure 5: Plot of the numerical solution in blue for ℎ = 0.1, the same as the previous figure, except solved
with the trapezoidal method, using newtons root finding for every timestep. The Solution is bounded, but
oscillates.

The solution is bounded, but it oscillates about the mean of the true solution?

Part 2
Reduce the time step to ℎ = 2𝑛∀𝑛 ∈ {−7, −8, −9, ⋯}

What happens to the oscillation when the time step is refined?

Solution

Let us refine the temporal resolution.
fig = Figure()

ax = Axis(fig[1, 1], title = "Trapezoidal method for varying h")

hs = [1/(2^7), 1/(2^8), 1/(2^9), 1/(2^10)]

lbs = [L"h = 2^{-7}", L"h = 2^{-8}", L"h = 2^{-9}", L"h = 2^{-10}"]

for i in eachindex(hs)

t, u = trapezoidalMethod((u, t) -> u̇ (u, t, 1e6), u0, ts, hs[i])

lines!(ax, t, u, label = lbs[i])

end

Legend(fig[1, 2], ax)

fig

13



Figure 6: Plot of the numerical solutions for varying temporal resolutions ℎ = 2−7 in blue, ℎ = 2−8 in yellow,
ℎ = 2−9 in green, and ℎ = 2−10 in pink. Notice that as ℎ decreases the oscillations decrease with time.

As the time step is refined, the oscillations seem to decrease (exponentially) with time.

Problem 6
Use the Euler method and the 2-step midpoint method, respectively, to solve the IVP

{𝑢̇ = −𝑢
𝑢(0) = 1

(45)

The exact solution of the IVP is 𝑢(𝑡) = 𝑒−𝑡. In the midpoint method, use the exact solution 𝑢1 = 𝑒−ℎ to get
started. Use ℎ = 0.2 for both methods.

Part 1
Solve the IVP to 𝑇 = 2. Compare the numerical results of the two methods and the exact solution in ONE
figure.

Is the midpoint method more accurate than the Euler in this time period?

Solution

The midpoint method is given by the following,

𝑦𝑛+1 = 𝑦𝑛−1 + 2ℎ𝑓(𝑦𝑛, 𝑡𝑛) (46)

Let us solve the IVP given by (45), with ℎ = 0.2.

14



# midpoint method

function midpoint(f::Function, u0::Float64, u1::Float64, tspan::SVector{2, Float64}, h::Float64)

t0, tf = tspan

N = Int(floor((tf - t0)/h))

t = Vector{Float64}(undef, N + 1)

u = Vector{Float64}(undef, N + 1)

t[1] = t0

u[1] = u0

u[2] = u1

t[2] = t[1] + h

for i = 2:N

t[i + 1] = t[i] + h

u[i + 1] = u[i - 1] + 2*h*f(u[i], t[i])

end

return t, u

end

λ(t) = exp(-t)

ts = SVector{2, Float64}(0.0, 2.0)

h = 0.2

fig = Figure()

ax = Axis(fig[1, 1], title = "comparison of euler and midpoint", xlabel = L"t")

t, u = midpoint((u, t) -> -u, 1.0, exp(-h), ts, h)

lines!(ax, t, u, label = "midpoint")

t, u = euler((u, t) -> -u, 1.0, ts, h)

lines!(ax, t, u, label = "euler")

lines!(ax, t, λ.(t), color = :red, linestyle = :dash, label = "exact")

Legend(fig[1, 2], ax)

fig

Figure 7: Comparison of the Euler method in yellow, and the 2-step midpoint method in blue. The exact
solution is a dashed red line. The midpoint method seems to be more accurate than the euler method.

15



The midpoint method is more accurate than the euler method.

Part 2
Solve the IVP to 𝑇 = 20. Compare the numercial results of the two methods and the exact solution in ONE
figure.

Is the result of the midpoint method well behaved over this longer period?

Solution

Let us compute the same as above but for 𝑇 = 20
ts = SVector{2, Float64}(0.0, 20.0)

h = 0.2

fig = Figure()

ax = Axis(

fig[1, 1],

title = "comparison of euler and midpoint methods",

xlabel = "t",

limits = ((10.0, 20.0), nothing)

)

t, u = midpoint((u, t) -> -u, 1.0, exp(-h), ts, h)

lines!(ax, t, u, label = "midpoint")

t, u = euler((u, t) -> -u, 1.0, ts, h)

lines!(ax, t, u, label = "euler")

lines!(ax, t, λ.(t), color = :red, linestyle = :dash, label = "exact")

Legend(fig[1, 2], ax)

fig

Figure 8: Comparison of the numerical solution to the IVP using the euler (yellow) and 2-step midpoint
method (blue) and exact solution in dashed red line from 𝑡 = 10 to 𝑡 = 20.

16



The numerical solution using the midpoint method begins to oscillate and blow up after 𝑡 = 15 and 𝑡 → ∞.

Part 3
With 𝑇 = 20, reduce the time step to ℎ = 0.2

32 , 0.2
64 , 0.2

128 . Does that reduce the growth of error in the midpoint
method?
ts = SVector{2, Float64}(0.0, 20.0)

hs = [0.2/32, 0.2/64, 0.2/128]

lbs = [L"h = \frac{0.2}{32}", L"h = \frac{0.2}{64}", L"h = \frac{0.2}{128}"]

fig = Figure(resolution = (600, 520))

for i in eachindex(hs)

ax = Axis(

fig[i, 1],

title = lbs[i],

limits = ((15, 20), (-10, 10)),

xlabel = "t"

)

t, u = midpoint((u, t) -> -u, 1.0, exp(-hs[i]), ts, hs[i])

lines!(ax, t, u, label = "midpoint")

t, u = euler((u, t) -> -u, 1.0, ts, hs[i])

lines!(ax, t, u, label = "euler")

lines!(ax, t, λ.(t), color = :red, linestyle = :dash, label = "exact")

end

Legend(fig[1, 2], ax)

fig

17



Figure 9: Comparison of Euler method in yellow and midpoint method in blue and the exact solution in
dashed red for varying temporal resolutions ℎ from time 𝑇 = 15 to 𝑇 = 20. As ℎ descreases the error also
decreases for this domain.

Increasing the temporal resolution results in a reduction in the growth of the error for the midpoint method.

18


	Problem 1
	Solution

	Problem 2
	Solution

	Problem 3
	Solution

	Problem 4
	Part 1
	Solution

	Part 2
	Solution


	Problem 5
	Part 1
	Solution

	Part 2
	Solution


	Problem 6
	Part 1
	Solution

	Part 2
	Solution

	Part 3


