
Homework 3
AM213B

Kevin Silberberg

2025-04-29

Problem 1
Part 1
Derive the stability function 𝜙(𝑧) for each of the two RK methods below

• predictor-corrector method (Heun’s method)
• Classic 4-th order RK4 method

Solution

The predictor-corrector method (Heun’s method) is as follows,

𝑘1 = 𝑓(𝑢𝑛, 𝑡𝑛) (1)
𝑘2 = 𝑓(𝑢𝑛 + ℎ𝑘1, 𝑡𝑛 + ℎ) (2)

𝑢𝑛+1 = 𝑢𝑛 + ℎ (1
2

𝑘1 + 1
2

𝑘2) (3)

The Butcher Array for the method is

0 0 0
1 1 0

1
2

1
2

(4)

We apply the above method to the test equation 𝑑𝑢
𝑑𝑡 = 𝑓(𝑢, 𝑡) = 𝜆𝑢 such that 𝑓(𝑢𝑛, 𝑡𝑛) = 𝜆𝑢𝑛.

We know that the stability function 𝜙(𝑧) can be written1

𝜙(𝑧) = 1 + 𝑧b𝑇 (I − 𝑧A)−1 1 (5)

where 1 is a column vector of all 1’s of length 𝑠, and 𝑧 = ℎ𝜆

So the stability function 𝜙(𝑧) for Heun’s method corresponding to the Butcher array (4) is,
1“Linear Multistep Methods” (2003)

1

𝜙(𝑧) = 1 + 𝑧 [1
2

1
2] ([1 0

0 1] − 𝑧 [0 0
1 0])

−1

[1
1] (6)

= 1 + 𝑧 [1
2

1
2] [1 0

−𝑧 1]
−1

[1
1] (7)

= 1 + 𝑧 [1
2

1
2] [1 0

𝑧 1] [1
1] (8)

= 1 + 𝑧 [1
2

1
2] [1

𝑧 + 1] (9)

= 1 + 𝑧 (1
2

+ 1
2

(𝑧 + 1)) (10)

= 1 + 𝑧 (1 + 1
2

𝑧) (11)

= 1 + 𝑧 + 1
2

𝑧2 (12)

The RK4 method has the following butcher array,

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

(13)

Let us write down the stability function 𝜙(𝑧) using the formula (5)

2

𝜙(𝑧) = 1 + 𝑧 [1
6

1
3

1
3

1
6]

⎛⎜⎜⎜
⎝

⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

− 𝑧
⎡
⎢
⎢
⎣

0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0

⎤
⎥
⎥
⎦

⎞⎟⎟⎟
⎠

−1

⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

(14)

= 1 + 𝑧 [1
6

1
3

1
3

1
6]

⎡
⎢⎢
⎣

1 0 0 0
𝑧
2 1 0 0
0 𝑧

2 1 0
0 0 𝑧 1

⎤
⎥⎥
⎦

−1

⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

(15)

= 1 + 𝑧 [1
6

1
3

1
3

1
6]

⎡
⎢
⎢
⎣

1 0 0 0
𝑧
2 1 0 0
𝑧2

4
𝑧
2 1 0

𝑧3

4
𝑧2

2 𝑧 1

⎤
⎥
⎥
⎦

⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

(16)

= 1 + 𝑧 [1
6

1
3

1
3

1
6]

⎡
⎢
⎢
⎣

1
𝑧
2 + 1

𝑧2

4 + 𝑧
2 + 1

𝑧3

4 + 𝑧2

2 + 𝑧 + 1

⎤
⎥
⎥
⎦

(17)

= 1 + 𝑧 (1
6

⋅ 1 + 1
3

⋅ (𝑧
2

+ 1) + 1
3

⋅ (𝑧2

4
+ 𝑧

2
+ 1) + 1

6
⋅ (𝑧3

4
+ 𝑧2

2
+ 𝑧 + 1)) (18)

= 1 + 𝑧 (1
6

+ 1
3

+ 1
3

+ 1
6

+ 𝑧
6

+ 𝑧
6

+ 𝑧
6

+ 𝑧2

12
+ 𝑧2

12
+ 𝑧3

24
) (19)

= 1 + 𝑧 (1 + 𝑧
2

+ 𝑧2

6
+ 𝑧3

24
) (20)

= 1 + 𝑧 + 𝑧2

2
+ 𝑧3

6
+ 𝑧4

24
(21)

Part 2
Plot the region of absolute stability (𝑆) for each of the two methods.

Solution

The ‘stability region’, defined as {𝑧 ∈ ℂ ∶ |𝑅(𝑧)| ≤ 1}, is the set of points in the complex plane such that the
computed solution remains bounded after many steps of computation.

Let us plot the regions of stability for each method in the complex plane.

Problem 2
Consider the RK method described by the following Butcher array,

𝛼 𝛼 0
1 1 − 𝛼 𝛼

1 − 𝛼 𝛼
(22)

where 𝛼 > 0. This is called a 2s-DIRK (2-Stage Diagonally Implicit Runge-Kutta) method.

Part 1
Show that the method is second order for 𝛼 = 1 − 1√

2 .

3

(a) (b)

Figure 1: Stability regions for numerical methods. Figure 1a The Classic RK4 method and Figure 1b the
Heun method, both with stability regions shown in lightblue.

Solution

Given the Butcher array and corresponding values for A, b, c, we will demonstrate that the method is second
order by verifying the order conditions derived from rooted trees up to order three.

Order conditions are constructed by comparing a polynomial Φ(𝑡) against the density 𝛾(𝑡) for all possible
rooted trees 𝑡 of each order. The order of a tree |𝑡| is the total number of nodes (including all leaf and root
nodes).

The order condition is defined as:

Φ(𝑡) = 1
𝛾(𝑡)

To compute 𝛾(𝑡):

1. Label each leaf node with value 1
2. Label each non-leaf node with a value of 1 plus the sum of its child nodes’ values
3. Calculate 𝛾(𝑡) by taking the product of all labeled values in the tree

To construct Φ(𝑡):

1. Label the root node with index 𝑖
2. Label each subsequent non-leaf node with indices 𝑗, 𝑘, 𝑙, 𝑚, …
3. Start with factor 𝑏𝑖
4. For each edge not terminating in a leaf node, add factor 𝑎𝑝𝑞 where:

• 𝑝 = parent node label
• 𝑞 = child node label

5. For each leaf node, add factor 𝑐𝑝 where 𝑝 is the parent node label
6. Sum the product of all factors across all possible label combinations

Let us proceed with determining the order of the 2s-DIRK method.

Recall from the butcher array (22) we have

4

A = [𝛼 0
1 − 𝛼 𝛼] b = [1 − 𝛼

𝛼] c = [𝛼
1] (23)

For order 1 there is only one possible tree, the root node.

The tree corresponding to order 1 is

𝑖

Figure 2: Tree of order 1

the density is 𝛾(𝑡) = 1 the polynomial is Φ(𝑡) = ∑2
𝑖=1 𝑏𝑖, thus the order condition is

2
∑
𝑖=1

𝑏𝑖 = 1 (24)

𝑏1 + 𝑏2 = 1 (25)
(1 − 𝛼) + 𝛼 = 1 (26)

1 = 1 (27)

The above is true so let us proceed to order 2.

There is only one possible tree,

𝑖

Figure 3: Tree of order 2

the density 𝛾(𝑡) = 2 and the polynomial is Φ(𝑡) = ∑2
𝑖=1 𝑏𝑖𝑐𝑖, thus the order condition is

2
∑
𝑖=1

𝑏𝑖𝑐𝑖 = 1
2

(28)

𝑏1𝑐1 + 𝑏2𝑐2 = 1
2

(29)

𝛼(1 − 𝛼) + 𝛼 = 1
2

(30)

𝛼 − 𝛼2 + 𝛼 = 1
2

(31)

𝛼 (2 − 𝛼) = 1
2

(32)

(1 − 1√
2

) (2 − 1 + 1√
2

) = 1
2

(33)

(1 − 1√
2

) (1 + 1√
2

) = 1
2

(34)

1 + 1√
2

− 1√
2

− 1
2

= 1
2

(35)

1
2

= 1
2

(36)

5

The above is true so let us proceed to order 3,

𝑖

(a)

𝑖

(b)

Figure 4: Trees of order 3

For the two trees above we have the following order conditions:

2
∑
𝑖,𝑗=0

𝑏𝑖𝑎𝑖𝑗𝑐𝑗 = 1
6

(a) (37)

𝑏𝑖𝑎11𝑐1 + 𝑏1𝑎12𝑐2 + 𝑏2𝑎21𝑐1 + 𝑏2𝑎22𝑐2 = 1
6

(38)
2

∑
𝑖=1

𝑏𝑖𝑐2
𝑖 = 1

3
(b) (39)

𝑏1𝑐2
1 + 𝑏2𝑐2

2 = 1
3

(40)

Let us carry out the calculation on the LHS of equation (38) corresponding to tree (a)

(1 − 𝛼)𝛼2 + 𝛼(1 − 𝛼)2 + 𝛼2 = 1
6

(41)

2𝛼2 − 𝛼3 + 𝛼 (1 − 2𝛼 + 𝛼2) = 1
6

(42)

2𝛼2 − 𝛼3 + 𝛼 − 2𝛼2 + 𝛼3 = 1
6

(43)

𝛼 = 1
6

(44)

Since 𝛼 = 1 − 1√
2 ≠ 1

6 we know that the 2s-DIRK method is not represented by tree (a).

Let us carry out the calculation on the LHS of equation (40) corresponding to tree (b)

(1 − 𝛼) 𝛼2 + 𝛼 = 1
3

(45)

𝛼 + 𝛼2 − 𝛼3 = 1
3

(46)

(1 − 1√
2

) + (1 − 1√
2

)
2

− (1 − 1√
2

)
3

= 1
3

(47)

1 − 1
√(2)

+ (1 − 2√
2

+ 1
2

) − (1 − 1√
2

− 2√
2

+ 1 + 1
2

− 1
2
√

2
) = 1

3
(48)

1
2
√

2
= 1

3
(49)

6

Thus we can conclude that the 2s-DIRK method with 𝛼 = 1 − 1√
2 has the form of the tree in Figure 3, and

that it is order 2.

Part 2
Show that the stability function 𝜙(𝑧) is

𝜙(𝑧) = 1 + (1 − 2𝛼)𝑧
(1 − 𝛼𝑧)2 (50)

Solution

Given c, b, A the stability function 𝜙(𝑧) of an RK method can be computed by the following2,

𝜙(𝑧) =
det (I + 𝑧 (1b𝑇 − A))

det (I − 𝑧A)
(51)

from the butcher array (22) we compute the stability function as follows,

𝜙(𝑧) =
det ([1 0

0 1] + 𝑧 ([1
1] [1 − 𝛼 𝛼] − [𝛼 0

1 − 𝛼 𝛼]))

det ([1 0
0 1] − 𝑧 [𝛼 0

1 − 𝛼 𝛼])
(52)

=
det ([1 + 𝑧(1 − 2𝛼) 𝑧𝛼

0 1])

det ([1 − 𝑧𝛼 0
−𝑧(1 − 𝛼) 1 − 𝑧𝛼])

(53)

= 1 + 𝑧(1 − 2𝛼)
(1 − 𝛼𝑧)2 (54)

Part 3
Plot the region of absolute stability (𝑆) for the 2s-DIRK with 𝛼 = 1 − 1√

2 .

Numerically, conclude that the 2s-DIRK with 𝛼 = 1 − 1√
2 is A-stable.

Solution

Let us plot the region of absolute stability

According to the book of Butcher3, we have the following definition for A-stability of RK methods.

A Runge-Kutta method is A-stable if its stability function satisfies

|𝜙(𝑧)| ≤ 1, whenever 𝑅𝑒(𝑧) ≤ 0 (55)

where 𝑅𝑒(𝑧) denotes the real part of the complex number 𝑧.

Clearly from the region of stability in Figure 5 we can see that the condition for A-stability is satisfied because
for all complex values with zero or negative real part the stability function is less than or equal to 1.

2“Linear Multistep Methods” (2003)
3“Linear Multistep Methods” (2003)

7

Figure 5: The Region of absolute stability for the 2s-DIRK method with 𝛼 = 1 − 1√
2

Problem 3
Part 1
Study the zero-stability for each of the three LMMs below

𝑢𝑛+2 − 2𝑢𝑛+1 + 𝑢𝑛 = ℎ (𝑓(𝑢𝑛+1, 𝑡𝑛+1) − 𝑓(𝑢𝑛, 𝑡𝑛)) (56)

𝑢𝑛+2 − 𝑢𝑛 = ℎ
3

(𝑓(𝑢𝑛+2, 𝑡𝑛+2) + 4𝑓(𝑢𝑛+1, 𝑡𝑛+1) + 𝑓(𝑢𝑛, 𝑡𝑛)) (57)

𝑢𝑛+2 − 4
3

𝑢𝑛+1 + 1
3

𝑢𝑛 = 2
3

ℎ𝑓(𝑢𝑛+2, 𝑡𝑛+2) (58)

Solution

An LMM satisfies the ‘root condition’ if the zeros of the polynomial

𝜌(𝑧) =
𝑞

∑
𝑗=0

𝛼𝑗𝑧𝑗 (59)

are within the unit circle, and those of modulus one are simple.

A numercial method of the form

𝑞

∑
𝑗=0

𝛼𝑗𝑢𝑛+𝑗 = ℎ
𝑞

∑
𝑗=0

𝛽𝑗𝑓(𝑢𝑛+𝑗, 𝑡𝑛+𝑗) (60)

8

is zero-stable if and only if it satisfies the root condition.

Let us compute the characteristic polynomial for each numerical method in Part 1.

For (56) we have

𝛼0 = 1 𝛽0 = −1 (61)
𝛼1 = −2 𝛽1 = 1 (62)
𝛼2 = 1 𝛽2 = 0 (63)

the characteristic polynomials are

𝜌(𝑧) = 𝑧2 − 2𝑧 + 1 (64)
𝜎(𝑧) = 𝑧 − 1 (65)

Let us find the roots of the characteristic polynomial 𝜌(𝑧)

𝑧2 − 2𝑧 + 1 = 0 (66)

𝑧 =
2 ± √(−2)2 − 4

2
(67)

𝑧 = 1 with algebraic multiplicity 2 (68)

thus (56) does not satisfy the root condition for zero-stability.

Let us study the zero-stabilty for (57).

The coefficients are

𝛼0 = −1 𝛽0 = 1
3

(69)

𝛼1 = 0 𝛽1 = 4
3

(70)

𝛼2 = 1 𝛽2 = 1
3

(71)

the characteristic polynomials are

𝜌(𝑧) = 𝑧2 − 1 (72)

𝜎(𝑧) = 1
3

(𝑧2 + 4𝑧 + 1) (73)

the roots of the polynomial 𝜌(𝑧) are,

𝑧2 − 1 = 0 (74)
𝑧2 = 1 (75)
𝑧 = 1 with multiplicity 2 (76)

9

thus (57) also does not satisfy the root condition for zero-stability.

let us study the zero-stability for (58)

the coefficients are

𝛼0 = 1
3

𝛽0 = 0 (77)

𝛼1 = −4
3

𝛽1 = 0 (78)

𝛼2 = 1 𝛽2 = 2
3

(79)

the characteristic equations are

𝜌(𝑧) = 𝑧2 − 4
3

𝑧 + 1
3

(80)

𝜎(𝑧) = 2
3

𝑧2 (81)

the roots of the polynomial 𝜌(𝑧) are,

𝑧2 − 4
3

𝑧 + 1
3

= 0 (82)

𝑧 = 4
3

⋅ 1
2

± 1
2

⋅ √(−4
3

)2 − 4 ⋅ 1
3

(83)

= 2
3

± 1
3

(84)

𝑧1 = 1 (85)

𝑧2 = 1
3

(86)

thus (58) satisfies the root condition for zero-stability.

Part 2
For (57), use the Taylor series expansion to show that the local truncation error 𝑒𝑛(ℎ) = 𝑂(ℎ5).

Solution

We find the local truncation error by considering the difference between the exact solution and the approximate
solution for one time step.

Let us write down the numerical method.

𝑢𝑛+2 − 𝑢𝑛 = ℎ
3

[𝑓(𝑢𝑛+2, 𝑡𝑛+2) + 4𝑓(𝑢𝑛+1, 𝑡𝑛+1) + 𝑓(𝑢𝑛, 𝑡𝑛)] (87)

Let us write down the local truncation error formula for this method.

10

𝑒𝑛(ℎ) = 𝑢(𝑡𝑛+2) − 𝑢(𝑡𝑛)⏟⏟⏟⏟⏟⏟⏟
𝑒𝑥𝑎𝑐𝑡

− (𝑢𝑛+2 − 𝑢𝑛)⏟⏟⏟⏟⏟
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒

(88)

Notice that we can center all the terms about the point 𝑡𝑛+1 by offsetting by the timestep ℎ. So 𝑡𝑛+2 becomes
𝑡𝑛+1 + ℎ and 𝑡𝑛 becomes 𝑡𝑛+1 − ℎ.

Let us taylor series expand the exact solution about the point 𝑡𝑛+1.

For the following we will use the short hand notation

𝑓(𝑢𝑛+1, 𝑡𝑛+1) = 𝑓(𝑢(𝑡𝑛+1), 𝑡𝑛+1) = 𝑓 (89)
𝑢(𝑡𝑛+1) = 𝑢 (90)

𝑑𝑚

𝑑𝑡𝑚 (𝑢(𝑡𝑛+1)) = 𝑢(𝑚) (91)

𝑢(𝑡𝑛+1 + ℎ) = 𝑢 + ℎ𝑢(1) + ℎ2

2!
𝑢(2) + ℎ3

3!
𝑢(3) + ℎ4

4!
𝑢(4) + 𝑂(ℎ5) (92)

𝑢(𝑡𝑛+1 − ℎ) = 𝑢 − ℎ𝑢(1) + ℎ2

2!
𝑢(2) − ℎ3

3!
𝑢(3) + ℎ4

4!
𝑢(4) + 𝑂(ℎ5) (93)

𝑢(𝑡𝑛+2) − 𝑢(𝑡𝑛) = 2ℎ𝑢(1) + ℎ3

3
𝑢(3) + 𝑂(ℎ5) (94)

Now let us taylor series expand the RHS of (87) centered at the time step 𝑡𝑛+1

𝑓(𝑢𝑛, 𝑡𝑛) = 𝑓(𝑢(𝑡𝑛+1 − ℎ), 𝑡𝑛+1 − ℎ) = 𝑓 − ℎ𝑓 (1) + ℎ2

2!
𝑓 (2) − ℎ3

3!
𝑓 (3) + ℎ4

4!
𝑓 (4) + 𝑂(ℎ5) (95)

𝑓(𝑢𝑛+1, 𝑡𝑛+1) = 𝑓(𝑢(𝑡𝑛+1), 𝑡𝑛+1) = 𝑓 (96)

𝑓(𝑢𝑛+2, 𝑡𝑛+2) = 𝑓(𝑢(𝑡𝑛+1 + ℎ), 𝑡𝑛+1 + ℎ) = 𝑓 + ℎ𝑓 (1) + ℎ2

2!
𝑓 (2) + ℎ3

3!
𝑓 (3) + ℎ4

4!
𝑓 (4) + 𝑂(ℎ5) (97)

Let us plug this into the RHS of (87)

ℎ
3

[6𝑓 + ℎ2𝑓 (2) + ℎ4

12
𝑓 (4) + 𝑂(ℎ6)] (98)

Let us plug all this back into (88), while recalling that for the general ODE we have 𝑢(𝑚) = 𝑓 (𝑚−1)

𝑒𝑛(ℎ) = 2ℎ𝑢(1) + ℎ3

3
𝑢(3) − 2ℎ𝑓 − ℎ3

3
𝑓 (2) − ℎ5

36
𝑓 (4) + 𝑂(ℎ7) (99)

= 2ℎ𝑓 + ℎ3

3
𝑓 (2) − 2ℎ𝑓 − ℎ3

3
𝑓 (2) − ℎ5

36
𝑓 (4) + 𝑂(ℎ7) (100)

= 𝑂(ℎ5) (101)

11

Part 3
Plot the region of absolute stability for (57) and (58).

Numerically, conclude that (58) is A-stable.

Solution

For a general linear multistep method (LMM) of the form

𝑟
∑
𝑗=0

𝛼𝑗𝑢𝑛+𝑗 = 𝑘
𝑟

∑
𝑗=0

𝛽𝑗𝑓(𝑢𝑛+𝑗, 𝑡𝑛+𝑗) (102)

the region of absolute stability is found by applying the method to the test equation

𝑑𝑢
𝑑𝑡

= 𝜆𝑢 (103)

obtaining

𝑟
∑
𝑗=0

𝛼𝑗𝑢𝑛+𝑗 = 𝑘
𝑟

∑
𝑗=0

𝛽𝑗𝜆𝑢𝑛+𝑗 (104)

which can be rewritten

𝑟
∑
𝑗=0

(𝛼𝑗 − 𝑧𝛽𝑗)𝑢𝑛+𝑗 = 0 (105)

the solution has the general form

𝑢𝑛 = 𝑐1𝜉𝑛
1 + 𝑐2𝜉𝑛

2 + ⋯ + 𝑐𝑟𝜉𝑛
𝑟 (106)

where 𝜉𝑗 are now the roots of the characteristic polynomial

𝑟
∑
𝑗=0

(𝛼𝑗 − 𝑧𝛽𝑗)𝜉𝑗 (107)

this is the stability polynomial 𝜋(𝜉; 𝑧). It is a polynomial in 𝜉 but its coefficients depend on the value 𝑧 = 𝜆ℎ.
The polynomial can be expressed in terms of the characteristic polynomials for the LMM computed above in
part 2.

𝜋(𝜉; 𝑧) = 𝜌(𝜉) − 𝑧𝜎(𝜉) (108)

Let us compute the stability polynomial for (57) and (58).

12

For (57) we have

𝜋(𝜉; 𝑧) = 𝜌(𝜉) − 𝑧𝜎(𝜉) (109)

= 𝜉2 − 1 − 𝑧
3

(𝜉2 + 4𝜉 + 1) (110)

for (58) we have

𝜋(𝜉; 𝑧) = 𝜌(𝜉) − 𝑧𝜎(𝜉) (111)

= 𝜉2 − 4
3

𝜉 + 1
3

− 2𝑧
3

𝜉2 (112)

we can simply plot the parametrized curve

̃𝑧(𝜃) = 𝜌(𝑒𝑖𝜃)
𝜎(𝑒𝑖𝜃)

(113)

for 0 ≤ 𝜃 ≤ 2𝜋 to find the locus of all points which are potentially on the boundary, then to find which side
of the curve is the interior of 𝒮, we need only evaluate the roots of 𝜋(𝜉; 𝑧) at some random point 𝑧 on one
side or the other and see if the polynomial satisfies the root condition.

Let us implement the above algorithm and plot the stability regions.

(a) (b)

Figure 6: Stability Regions for (57) (a) and (58) (b). We can immediately conclude that the method (58)
(the BDF2 method) is A-stable because the left-half complex plane is entirely stable. Additionally, for the
LMM2 method, the region collapses to the interval [-i, i] on the imaginary axis. Meaning the method is
unconditionally absolutely unstable and there is no hope to simulate accurately a linear dynamical system
that has an attractor at the origin.

13

Problem 4
Read the sample code on implementing a 3-stage DIRK method. Write your code to implement the 2s-DIRK
method (22) in problem 2 with 𝛼 = 1 − 1√

2 to solve the following IVP.

{
𝑑𝑢
𝑑𝑡 = − (1

2 + 𝑒20 cos(1.3𝑡)) sinh(𝑢 − cos(𝑡))
𝑢(0) = 0

(114)

In the time domain 𝑡 ∈ [0, 30]

Part 1
Plot the numerical solution 𝑢(𝑡) vs 𝑡 for ℎ = 2−6.

Plot cos(𝑡) vs 𝑡 in the same figure for comparison.

Does the solution 𝑢(𝑡) always follow the function cos(𝑡) very closely?

Solution

Let us plot the numerical solution over the function cos(𝑡) for the time domain 𝑡 ∈ [0, 30].

Figure 7: Comparison of the numerical solution to the ODE (114) in the time domain 𝑡 ∈ [0, 30] for ℎ = 2−6

against cos(𝑡)

Yes the numerical solution closely follows the function cos (𝑡) even for later times.

Part 2
Use log-log to plot |𝑢(𝑡) − cos(𝑡)| vs (1

2 + 𝑒20 cos(1.3𝑡)) for 𝑡 ∈ [0, 30].

14

Solution

Figure 8: Log-log plot of |𝑢(𝑡) − cos(𝑡)| vs (1
2 + 𝑒20 cos(1.3𝑡)) with ℎ = 2−6 for 𝑡 ∈ [0, 30]

Problem 5
Implement the backward Euler and the 2s-DIRK method with 𝛼 = 1 − 1√

2 . Use each of these two methods to
solve (114) in 𝑡 ∈ [0, 30]. Try time steps ℎ = 2−𝑖 ∀𝑖 ∈ [4, 5, ⋯ , 9].

For each numerical method, carry out error estimation.

Part 1
For each method, plot the |estimated error| vs 𝑡 for ℎ = 2−4. Plot the two curves in ONE figure for comparison.
Use log-scale for errors.

Solution

Given that the 2-stage DIRK method is 2nd order, we carry out the error estimation using the Richardsom
extrapolation,

𝐸𝑛(ℎ) = 1
1 − (0.5)2 (𝑢𝑛(ℎ) − 𝑢2𝑛(ℎ/2)) (115)

15

https://lemesurierb.people.charleston.edu/numerical-methods-and-analysis-julia/main/richardson-extrapolation.html
https://lemesurierb.people.charleston.edu/numerical-methods-and-analysis-julia/main/richardson-extrapolation.html

Figure 9: Plot of the estimated error for the numerical solution of IVP (114) using the backward euler method
(blue) and the 2-stage DIRK method (yellow) for ℎ = 2−4 over time.

Part 2
In a seperate figure, plot the two curves of estimated errors vs t for ℎ = 2−8.

Solution

Figure 10: Plot of the estimated error for the numerical solution of IVP (114) using the backward euler
method (blue) and the 2-stage DIRK method (yellow) for ℎ = 2−8 over time.

16

Appendix: Source Code
Problem 1 Part 2

using GLMakie

function p1p2(method::Symbol)

local R

if isequal(method, :RK4)

R = z -> 1 + z + 0.5*z^2 + (1.0/6.0)*z^3 + (1.0/24.0)*z^4

elseif isequal(method, :Heun)

R = z -> 1 + z + 0.5*z^2

else

println("wrong symbol use :RK4 or :Heun")

return nothing

end

res = 1000

xs = [i for i in LinRange(-3, 3, res)]

ys = [i for i in LinRange(-3, 3, res)]

S = zeros(res, res)

for idx in CartesianIndices(S)

i, j = idx.I

S[idx] = abs(R(complex(xs[i], ys[j])))

end

fig = Figure()

ax = Axis(

fig[1, 1],

title = "Stability Region for $(method) method",

xlabel = "Re(z)",

ylabel = "Im(z)",

aspect = DataAspect()

)

contour!(ax, xs, ys, S, levels = [1.0], color = :blue, linewidth = 3)

contourf!(ax, xs, ys, S, levels = [0, 1], colormap = [:lightblue, :white])

save("$(method)_stability.png", fig)

end

Problem 2 Part 3

using GLMakie

function p2p3()

local R(z, α) = (1 + z*(1 - 2*α))/((1 - α*z)^2)

α::Float64 = 0.29289321881345254

res::Int = 1000

xs = [i for i in LinRange(-5, 15, res)]

ys = [i for i in LinRange(-10, 10, res)]

S = zeros(res, res)

for idx in CartesianIndices(S)

i, j = idx.I

S[idx] = abs(R(complex(xs[i], ys[j]), α))

end

fig = Figure()

ax = Axis(fig[1, 1],

title = "Stability Region for 2s-DIRK method",

xlabel = "Re(z)",

17

ylabel = "Im(z)",

aspect = DataAspect()

)

contour!(ax, xs, ys, S, levels = [1.0], color = :blue, linewidth = 3)

contourf!(ax, xs, ys, S, levels = [0, 1], colormap = [:lightblue, :white])

elements = [PolyElement(color = :lightblue), LineElement(color = :blue, linewidth = 3)]

labels = [L"Stable: $|R(z)| \leq 1$", L"Boundary: $|R(z)| = 1$"]

Legend(fig[1, 2], elements, labels, "Stability", halign = :left)

save("2s-DIRK_stability.png", fig)

end

Problem 3 Part 3

using GLMakie

using PolynomialRoots

using LinearAlgebra

LLM1

characteristic polynomials

ρ_1(ξ) = ξ^2.0 - 1.0

σ_1(ξ) = (1.0/3.0)*(ξ^2.0 + 4.0*ξ + 1.0)

stability polynomial

Π_1(z) = [-z/3.0 - 1.0, -4.0*z/3.0, 1.0 - z/3.0]

parametrized curve

z_1(θ) = ρ_1(exp(im*θ)) / σ_1(exp(im*θ))

BDF1

characteristic polynomials

ρ_2(ξ) = ξ^2.0 - (4.0/3.0)*ξ + (1.0/3.0)

σ_2(ξ) = (2.0/3.0)*ξ^2

stability polynomial

Π_2(z) = [1.0/3.0, -4.0/3.0, 1.0 - 2.0*z/3.0]

parameterized curve

z_2(θ) = ρ_2(exp(im*θ)) / σ_2(exp(im*θ))

function to plot stability region

function make_plot(z::Function, Π::Function, method::AbstractString)

lims = ((-1, 4.5), (-3, 3))

res = 1000

xs = collect(LinRange(lims[1][1], lims[1][2], res))

ys = collect(LinRange(lims[2][1], lims[2][2], res))

S = zeros(res, res)

for idx in CartesianIndices(S)

i, j = idx.I

k = complex(xs[i], ys[j])

S[idx] = maximum(abs.(roots(Π(k))))

end

fig = Figure()

ax = Axis(

fig[1, 1],

xlabel = L"\text{Re}(z)",

ylabel = L"\text{Im}(z)",

aspect = DataAspect(),

18

limits = lims

)

ax.title = "Stability region for the $(method) method"

plot the boundary locus

θ = LinRange(0, 2π, 1000)

z_vals = z.(θ)

z_real = real.(z_vals)

z_imag = imag.(z_vals)

contourf!(ax, xs, ys, S, levels = [0, 1], colormap = [:lightblue, :white])

lines!(ax, z_real, z_imag, color = :red, linestyle = :dash)

elements = [PolyElement(color = :white), PolyElement(color = :lightblue), LineElement(color = :red, linestyle = :dash)]

labels = [L"\text{Unstable}", L"\text{Stable}", L"\text{Boundary locus}"]

Legend(fig[1, 2], elements, labels, halign = :left)

save("h3prob3part3$(method).png", fig)

end

Problem 4

module problem4

using GLMakie

using LinearAlgebra

export DIRK2, dudt, newton

function newton(f::Function; x_init::Float64 = 1.0, maxiter = 100, h = 1e-8)

x_current = x_init

x_next = x_current

y = f(x_current)

Δx = Inf

k = 1

while (abs(Δx) > 10*eps()) && (abs(y) > 10*eps()) && (k < maxiter)

df = (f(x_current + h) - f(x_current - h)) / (2*h)

Δx = -y/df

x_next = x_current + Δx

k += 1

y = f(x_next)

x_current = x_next

end

x_current

end

function DIRK2(f::Function, u0::Float64, tspan::Tuple, h::Float64;

α = 1 - (1/sqrt(2)))

p = 2

A = [α 0; 1-α α]; b = [1-α, α]; c = [α, 1]

t0, tf = tspan

N = Int(floor((tf - t0)/h))

t = Vector{Float64}(undef, N+1)

u = Vector{Float64}(undef, N+1)

k = zeros(p, 1)

u[1] = u0

t[1] = t0

for n = 1:N

for i = 1:p

G = x -> h*f(u[n]+dot(A[i, 1:i-1],k[1:i-1])+A[i, i]*x,t[n]+c[i]*h)-x

k[i] = newton(G, x_init = 0.0)

19

end

u[n + 1] = u[n] + dot(b, k)

t[n + 1] = t[n] + h

end

u, t

end

dudt(u, t) = -(0.5 + exp(20*cos(1.3*t)))*sinh(u - cos(t))

function part1()

fig = Figure()

ax = Axis(fig[1, 1],

title = L"Approximate solution against $\cos(t)$",

xlabel = L"t", ylabel = L"f(t)")

u, t = DIRK2(dudt, 0.0, (0.0, 30.0), 2^(-6))

lines!(ax, t, cos.(t), color = :red, linestyle = :dash, label = L"$\cos{(t)}$")

lines!(ax, t, u, color = :blue, label = L"$u(t)$")

Legend(fig[1, 2], ax)

fig

end

function part2()

fig = Figure()

ax = Axis(

fig[1, 1],

xlabel = L"$\frac{1}{2} + e^{20\cos(1.3t)}$",

ylabel = L"$|u(t) - \cos(t)|$",

xscale = log10,

yscale = log10

)

u, t = DIRK2(dudt, 0.0, (0.0, 30.0), 2^(-6))

x = cos.(t)

k = abs.(u .- x)

g = t -> 0.5 + exp(20*cos(1.3*t))

z = g.(t)

lines!(ax, z, k)

fig

end

end

Problem 5

if !@isdefined problem4

include("hw3problem4.jl")

using .problem4

end

using GLMakie

using LinearAlgebra

function backwardEuler(f::Function, u0::Float64, tspan::Tuple, h::Float64)

t0, tf = tspan

N = Int(floor((tf - t0)/h))

t = Vector{Float64}(undef, N+1)

u = Vector{Float64}(undef, N+1)

u[1] = u0

t[1] = t0

20

for n = 1:N

G = k -> h*f(u[n] + h*k, t[n] + h) - k

k = newton(G, x_init = 0.0)

u[n + 1] = u[n] + h*k

t[n + 1] = t[n] + h

end

return u, t

end

function error(u::Vector{Float64}, u2::Vector{Float64})

a = 1/(1 - 0.5^2)

E = Vector{Float64}(undef, length(u))

for n in eachindex(E)

E[n] = norm(a*(u[n] - u2[2*n-1]))

end

E

end

function part12(h::Float64)

fig = Figure()

ax = Axis(fig[1, 1],

title = L"Estimated Error Backwards Euler vs 2-stage DIRK for IVP",

xlabel = L"t",

ylabel = L"|\text{Error}|",

yscale = log10,

limits = (nothing, (1e-13, 1))

)

u1, t1 = backwardEuler(dudt, 0.0, (0.0, 30.0), h)

u2, t2 = backwardEuler(dudt, 0.0, (0.0, 30.0), (h/2))

e = error(u1, u2)

lines!(ax, t1, e, label = L"BW Euler")

u1, t1 = DIRK2(dudt, 0.0, (0.0, 30.0), h)

u2, t2 = DIRK2(dudt, 0.0, (0.0, 30.0), (h/2))

e = error(u1, u2)

lines!(ax, t1, e, label = L"2s-DIRK")

Legend(fig[1, 2], ax)

fig

end

References
“Linear Multistep Methods.” 2003. In Numerical Methods for Ordinary Differential Equations, 301–55. John

Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/0470868279.ch4.

21

https://doi.org/10.1002/0470868279.ch4

	Problem 1
	Part 1
	Solution

	Part 2
	Solution

	Problem 2
	Part 1
	Solution

	Part 2
	Solution

	Part 3
	Solution

	Problem 3
	Part 1
	Solution

	Part 2
	Solution

	Part 3
	Solution

	Problem 4
	Part 1
	Solution

	Part 2
	Solution

	Problem 5
	Part 1
	Solution

	Part 2
	Solution

	Appendix: Source Code
	Problem 1 Part 2
	Problem 2 Part 3
	Problem 3 Part 3
	Problem 4
	Problem 5

	References

