
AM 213B Prof. Daniele Venturi

Initial value problems for ODEs

In this lecture we briefly review the mathematical theory of initial value problems for systems of first-
order ordinary differential equations (ODEs). While systems of ODEs are of great importance on their
own (many real-world systems are modeled in terms of ODEs), they also play a fundamental role in the
numerical approximation of PDEs.

The initial value problem for one ODE. Let us begin with the following initial value problem for just
one ODE 

dy

dt
= f(y, t)

y(0) = y0

(1)

where f : D × [0, T ] 7→ R and D ⊆ R is a subset of R. In order for the initial value problem (1) to be
well-posed, i.e., for the problem to have a unique solution in a certain space of functions, we need to impose
some mild restrictions on f(y, t). As we will see, it is sufficient for f to be continuous in time and Lipschitz
continuous in the domain D.

Definition 1. Let D ⊆ R be a subset of R. We say that f : D × [0, T ]→ R is Lipschitz continuous in D
if there exists a positive constant 0 ≤ L <∞ (Lipschitz constant) such that

|f(y1, t)− f(y2, t)| ≤ L |y1 − y2| for all t ∈ [0, T ]. (2)

The smallest number L∗ such that the inequality above is satisfied is called “best” Lipschitz constant.

Lipschitz continuity is stronger than just continuity, which requires only that1

lim
y1→y±2

|f(y1, t)− f(y2, t)| = 0 for all t ∈ [0, T ] and for all y2 in the interior of D. (3)

Indeed, Lipschitz continuity implies that the rate at which f(y1, t) approaches f(y2, t) cannot be larger
than L for all y1 and y2 in D. In other words, a Lipschitz continuous function f(y, t) has a growth rate
that is bounded by L for all y1 and y2 in D.

Example: Let D = [−1, 1] be a closed interval, i.e., an interval including the endpoints −1 and 1. The
function f(y, t) = e−t

2
y1/3 is continuous in D for all t ∈ R (see Figure 1). However, f(y, t) is not Lipschitz

continuous in D. The problem here is that f(y, t) has infinite “slope” at the point y = 0 for all t ∈ R. In
other words, there is no constant 0 ≤ L <∞ such that

|f(y, t)− f(0, t)| ≤ L |y − 0| for all y ∈ D. (4)

This can be seen by substituting f(y, t) = e−t
2
y1/3 in (4)

|f(y, t)| ≤ L |y| ⇒ e−t
2

∣∣∣∣∣y1/3y
∣∣∣∣∣ = e−t

2

∣∣∣∣ 1

y2/3

∣∣∣∣ ≤ L for all y ∈ D. (5)

Clearly, if we send y to zero we have that L goes to infinity, and therefore f(y, t) is not Lipschitz con-
tinuous in D. Note that f(y, t) is Lipschitz continuous (actually infinitely differentiable with continuous
derivatives), e.g., in

D = [−1, 1] \ {0} = [−1, 0[ ∪ ]0, 1] or in D = [1, 10]. (6)
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Figure 1: Sketch of f(y, t) = e−t
2
y1/3 in [−1, 1] at t = 0 and t = 1. The function has infinite slope at y = 0.

Figure 2: Geometric meaning of Lipschitz continuity.

The Lipschitz continuity condition (2) has a nice geometric interpretation. In practice it says that the
function f(y, t) can never enter a double cone with slope L and vertex on any point (y, f(y, t))) where
y ∈ D. In other words, if we can slide the vertex of the double cone over the (continuous) function f(y, t)
for y ∈ D and the function never enters the cone then f(y, t) is Lipschitz continuous in D. To explain this,
let us divide the inequality (2) by |y1 − y2| (for y1 6= y2). This yields∣∣∣∣f(y1, t)− f(y2, t)

y1 − y2

∣∣∣∣︸ ︷︷ ︸
|K|

≤ L for all y1, y2 ∈ D. (7)

For each fixed y1 and y2 inD we see thatK represents the slope of the line connecting the points (y1, f(y1, t))
and (y2, f(y2, t)) (see Figure 2). Clearly, the best Lipshitz constant is obtained as

L∗ = max
y1,y2∈D

∣∣∣∣f(y1, t)− f(y2, t)

y1 − y2

∣∣∣∣ . (8)

1The notation y1 → y±2 means that y1 is approaching y2 either from the left (“−”) or from the right (“+”). Note that we
can equivalently write (3) as

lim
y1→y+2

f(y1, t) = lim
y1→y−2

f(y1, t) = f(y2, t).
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Any L ≥ L∗ is still a Lipschitz constant. If the function f(y, t) is continuously differentiable in y ∈ D and
D is compact then

L∗ = max
y∈D

∣∣∣∣∂f(y, t)

∂y

∣∣∣∣ <∞. (9)

Lemma 1. If f(y, t) is of class C1 in a compact subset D ⊆ R for all t ∈ [0, T ] then f(y, t) is Lipschitz
continuous in D.

Proof. By assumption the derivative of ∂f(y, t)/∂y is continuous on the compact domain D ⊆ R. This
implies that the minimum and the maximum of ∂f(y, t)/∂y is attained at some points in D. By using the
mean value theorem we immediately see that

|f(y1, t)− f(y2, t)| =
∣∣∣∣∂f(y∗, t)

∂y

∣∣∣∣ |y1 − y2| . (10)

where y∗ is some point within the interval [y1, y2]. The point y∗ depends on f , y1 and y2. The right hand
side of (10) can be bounded as

|f(y1, t)− f(y2, t)| ≤ max
y∈D

∣∣∣∣∂f(y, t)

∂y

∣∣∣∣︸ ︷︷ ︸
L∗

|y1 − y2| for all y1, y2 ∈ D. (11)

Example: The function f(y) = y2 is of class C∞ (infinitely differentiable with continuous derivative) in any
bounded subset of R. The function is not Lipshitz continuous at y = ±∞, since the slope of the first-order
derivative f ′(y) = 2y grows unboundedly as y → ±∞.

Remark: The initial value problem (1) can be equivalently written as

y(t) = y0 +

∫ T

0

dy(s)

ds
ds = y0 +

∫ t

0
f(y(s), s)ds (12)

i.e., as an integral equation for y(s). This formulation is quite convenient for developing numerical methods
for ODEs based on numerical quadrature formulas, i.e., numerical approximations of the temporal integral
appearing at the right hand side of (12). For example, consider a discretization of the time interval [0, T ]
in terms of N + 1 evenly-spaced time instants

ti = i∆t i = 0, 1, . . . , N where ∆t =
T

N
. (13)

By applying (12) within each time interval [ti, ti+1] we obtain

y(ti+1) = y(ti) +

∫ ti+1

ti

f(y(s), s)ds. (14)

At this point we can approximate the integral at the right hand side if (14), e.g., by using the simple
rectangle rule (see Figure 3) ∫ ti+1

ti

f(y(s), s)ds ' ∆tf(y(ti), ti) (15)
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Figure 3: Approximations of the integral
∫ ti+1

ti
f(y(s), s)ds in (14) leading to well-known numerical schemes:

Euler forward (rectangle rule), Crank-Nicolson (trapezoidal rule)

This yields the Euler forward scheme

ui+1 = ui + ∆tf(ui, ti), (16)

where ui is an approximation of y(ti). The Euler forward scheme is an explicit one-step scheme. The
adjective “explicit” emphasizes the fact that ui+1 can be computed explicitly based on the knowledge of f
and ui using (16). On the other hand, if we approximate the integral at the right hand side of (12) with
the trapezoidal rule ∫ ti+1

ti

f(y(s), s)ds ' ∆t

2
[f(y(ti+1), ti+1) + f(y(ti), ti)] (17)

we obtain the Crank-Nicolson scheme

ui+1 = ui +
∆t

2
[f(ui, ti) + f(ui+1, ti)] . (18)

The Crank-Nicolson scheme is “implicit” because the approximate solution at time ti+1, i.e., ui+1, cannot
be computed explicitly based on ui, but requires the solution of a nonlinear equation. Such a solution can
be computed numerically by using any method to solve nonlinear equations. These methods are usually
iterative, e.g., the bisection method, or the Newton method if f is continuously differentiable. Iterative
methods for nonlinear equations can be formulated as fixed point iteration problems. In the specific case
of (18) we have

ui+1 = G(ui+1) where G(ui+1) = ui +
∆t

2
[f(ui, ti) + f(ui+1, ti)] . (19)

If ∆t is small then ui is close to ui+1. Moreover, if ∆t is sufficiently small we have that the Lipschitz
constant of G is smaller than 1, which implies that the fixed point iterations will convergence globally to
a unique solution ui+1 (see, e.g., [3, Ch. 6]).

Next, we formulate a well-known result for existence and uniqueness of the solution to the Cauchy problem
for one ODE.

Theorem 1 (Well-posedness of the initial value problem for one ODE). Let D ⊂ R be an open set,
y0 ∈ D. If f : D × [0, T ] → R is Lipschitz continuous in D and continuous in [0, T ] then there exists a
unique solution to the initial value problem (1) within the time interval [0, τ [, where τ is the instant at
which y(t) exists the domain D. The solution y(t) is continuously differentiable in [0, τ [.
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Clearly, if f(y, t) is Lipschitz continuous in y ∈ R and continuous in t then the solution to the initial value
problem (1) is global in the sense that it exists and is unique for all t ≥ 0. This can be seen by noting that
y(t) never exits the domain in which f(y, t) is Lipschitz continuous.

Hereafter we provide a simple example of an initial value problem that blows-up in a finite time, and an
initial value problem that is not well posed.

• Finite-time blow-up: Consider the initial value problem

dy

dt
= y2 y(0) = 1. (20)

We know that f(y) = y2 is non-Lipschitz at infinity. By using separation of variables it is straight-
forward to show that the solution to (20) is

y(t) =
1

1− t
. (21)

The function y(t) clearly blows up to infinity as t approaches one (from the left).

• Non-uniqueness of solutions: Consider the initial value problem

dy

dt
= y1/3 y(0) = 0. (22)

We have seen that f(y) = y1/3 is not Lipshitz in any compact domain D including the point y = 0.
In this case we are setting the initial condition exactly at the point in which the slope of f(y) is
infinity. By using separation of variables it can be shown that a solution to (22) is

y(t) =

(
2

3
t

)3/2

. (23)

However, as easily seen, the functions

y(t) =


0 for 0 ≤ t < c

±
(

2

3
(t− c)

)3/2

for t ≥ c
(24)

are also solutions to (22) for every c ≥ 0.

Theorem 2 (Dependency of the ODE solution on the initial condition y0). Let D ⊂ R be an open set,
y0 ∈ D. If f : D× [0, T ]→ R is Lipschitz continuous in D and continuous in [0, T ] then the solution to (1)
y(t; y0) (i.e., the flow generated by the ODE) is continuous in y0. Moreover, if f(y, t) is of class Ck in D
(continuously differentiable k-times in D) then y(t; y0) is of class Ck in D.

Remark: By applying Theorem 1 iteratively (in the sense that we restart the the system from a new
initial condition) we conclude that f can also be piece-wise continuous in time. This case is studied quite
extensively in control of ODEs where a piecewise constant function in time is used as a control to minimize
or maximize some performance metric. In this case the solution to (1) is continuous in time and piecewise
diffentiable in time. The non-differentiability is at the times where the right hand side is not continuous
(in t). And example of an ODE with piecewise constant control v(t) is

dy

dt
= g(y, t) + v(t)︸︷︷︸

control

, y(0) = y0. (25)
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Figure 4: Piecewise differentiability of the solution in case the control v(t) in equation (25) is piecewise
continuous in time.

The control v(t) can be computed, e.g., by solving the optimization problem

min
v(t)∈S

|y(T )− y∗|2 subject to (25), (26)

where S is some function space, e.g., the space of piecewise continuous functions in [0, T ]. Clearly, y(T )
depends on the whole time history of the function v(t). Such functional dependence is often denoted as
y(t, [v(t)]).

The initial value problem for systems of ODEs. Consider the following systems of nonlinear
ODEs 

dy

dt
= f(y, t)

y(0) = y0

(27)

where y(t) = [y1(t) · · · yn(t)]T is a vector of phase variables, f : D × [0, T ]→ Rn, and D is a subset of Rn.
In an extended notation the system of ODEs (27) is written as

dy1
dt

= f1(y1, . . . , yn, t)

dy2
dt

= f2(y1, . . . , yn, t)

...
dyn
dt

= fn(y1, . . . , yn, t)

y1(0) = y10

y2(0) = y20
...

yn(0) = yn0

(28)

Systems of ODE such as (1) or (28) arise, e.g., when modeling physical systems (e.g., pendulum equa-
tions, UAV models, etc.) or when performing a discretization of a partial differential equation to remove
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dependence on spatial variables. Let us provide a simple example of a particular type of such a discretiza-
tion.

Example: Consider the following initial-boundary value problem for the heat equation
∂y(t, x)

∂t
= α

∂2y(x, t)

∂x2
diffusion equation

y(0, x) = y0(x) initial condition

y(t, 0) = y(t, 2π) periodic boundary conditions

(29)

Since this problem is defined on a periodic domain, i.e., on the circle T, we can use a Fourier spectral
method to discretize it in space. To this end, consider the truncated Fourier series expansion2

yN (t, x) =
N∑

k=−N
ck(t)e

ikx, (32)

where ck(t) are time dependent functions with values in C. The series (32) automatically satisfies the
periodic boundary conditions of the problem. A substitution of (32) into (29) yields,

∂yN (t, x)

∂t
= α

∂2yN (x, t)

∂x2
+RN (x, t)︸ ︷︷ ︸

residual

(33)

i.e.,
N∑

k=−N

dck(t)

dt
eikx = −α

N∑
k=−N

k2ck(t)e
ikx +RN (x, t) (34)

At this point we impose that the residual PDE RN (x, t) is orthogonal o the span of the basis BN =
{eikx}Nk=−N in the sense of the standard inner product

(u, v)L2([0,2π] =

∫ 2π

0
u(x)v(x)dx, (35)

i.e., (
RN (x, t), e−ijx

)
L2([0,2π]

= 0 j = −N, ..., N. (36)

This is called Fourier-Galerkin method [2, p.43], and yields a linear systems of 2N+1 ODEs for the Fourier
coefficients ck

dck(t)

dt
= −αk2ck(t), ck(0) =

1

2π

∫ 2π

0
y0(x)e−ikxdx k = −N, ..., N. (37)

Note that this system can be solved analytically. The solution is as

ck(t) =
e−αk

2t

2π

∫ 2π

0
y0(x)e−ikxdx (38)

2The convergence rate of the Fourier series (32) to y(x, t) depends on the smoothness of y(x, t) in x ∈ [0, 2π]. Specifically,
it can be shown that if y(x, t) ∈ Hq([0, 2π]) (Sobolev space with degree q) for all t then [2, p. 35]

‖y(x, t)− yN (x, t)‖2L2([0,2π]) ≤ CN
−q

∥∥∥∥dqydxq

∥∥∥∥2

L2([0,2π])

. (30)

This type of convergence is called spectral converge. Moreover, if y(x, t) is analytic in x for all t then it can be shown that

‖y(x, t)− yN (x, t)‖2L2([0,2π]) ≤ Qe
−cN ‖y‖2L2([0,2π]) , (31)

i.e., convergence is exponential [2, p. 36].
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which allows yields the approximate solution

yN (x, t) =
1

2π

N∑
k=−N

eikx−αk
2t

∫ 2π

0
y0(x)e−ikxdx. (39)

As we will see, the IBVP (29) can be discretized in space by using many other techniques including finite-
difference methods, pseudo-spectral collocation methods, finite-elements methods, etc. The proper way to
formulate these methods often goes through the so-called weak (or variational) form of the PDE. AM 213B
focuses mostly on finite-difference approximation methods of PDEs. For example, a central finite-difference
approximation of the PDE (29) yields the ODE system

du(xk, t)

dt
=

α

∆x2
(u(xk+1, t)− 2u(xk, t) + u(xk−1, t)) u(xN+j , t) = u(xj , t) (40)

where

xk = k∆x k = 0, . . . , N, ∆x =
2π

(N + 1)
(uniform grid spacing). (41)

Clearly, this system can be written in the form (28) provided we define

yk(t) = u(xk, t) fk(y1, . . . , yn) =
α

∆x2
(yk+1 − 2yk + yk−1) (42)

As before, we can re-write the Cauchy problem as an integral equation

y(t) = y(0) +

∫ t

0
f(y(s), s)ds, (43)

which is very handy to derive numerical methods based on numerical quadrature of the one-dimensional
integral at the right hand side. For instance, consider a partition of the [0, T ] into an evenly spaced grid
points such that ti+1 = ti + ∆t, and write (43) within each time interval

y(ti+1) = y(ti) +

∫ ti+1

ti

f(y(s), s)ds. (44)

By approximating the integral at the right hand side of (44), e.g., using the midpoint rule yields∫ ti+1

ti

f(y(s), s)ds ' ∆tf

(
y

(
ti +

∆t

2

)
, ti +

∆t

2

)
(45)

At this point, we can approximate y(ti + ∆t/2) using the Euler forward method

y

(
ti +

∆t

2

)
' y(ti) +

∆t

2
f(y(ti), ti) (46)

to obtain the explicit midpoint method

ui+1 = ui + ∆tf

(
ui +

∆t

2
f(ui, ti), ti +

∆t

2

)
(47)

where ui is an approximation of f(ti). The explicit midpoint method is a one-step method that belongs
to the class of Runge-Kutta methods3. The integral formulation (43) is also at the basis of the Picard
iteration method which is used to prove the following theorem.

3As we will see, the explicit midpoint method (47) is a two-stage explicit Runge-Kutta method.
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Theorem 3 (Well-posedness of initial value problems for systems of ODEs). Let D ⊂ Rn be an open set,
y0 ∈ D. If f : D × [0, T ] → R is Lipschitz continuous in D and continuous in [0, T ] then there exists a
unique solution to the initial value problem (27) within the time interval [0, τ [, where τ is defined to be
the instant at which y(t) exits the domain D in which f is Lipschitz continuous. The solution y(t) is
continuously differentiable in [0, τ [.

How do we define Lipschitz continuity for a vector-valued function f(y, t) defined in subset of Rd? By a
simple generalization of the definition we gave for one-dimensional functions.

Definition 2. Let D be a subset of Rn, f : D × [0, T ]→ Rn. We say that f is Lipschitz continuous in D
if there exists a constant 0 ≤ L <∞ such that

‖f(y1, t)− f(y2, t)‖ ≤ L ‖y1 − y2‖ for all y1,y2 ∈ D, (48)

where ‖·‖ is any norm defined in Rn.

Remark: As is well known, all norms defined in a finite-dimensional vector space (such as Rn) are equivalent.
This means that if we pick two arbitrary norms in Rn, say ‖·‖a and ‖·‖b , then there exist two numbers c1
and c2 such that

c1 ‖y‖a ≤ ‖y‖b ≤ c2 ‖y‖a for all y ∈ Rn. (49)

The most common norms in Rn are

‖y‖∞ = max
k=1,..,n

|yk| , (50)

‖y‖1 =
n∑
k=1

|yk| , (51)

‖y‖2 =

(
n∑
k=1

|yk|2
)1/2

, (52)

... (53)

‖y‖p =

(
n∑
k=1

|yk|p
)1/p

p ∈ N \ {∞}. (54)

Based on these definitions it is easy to show, e.g., that

‖y‖∞ ≤ ‖y‖1 ≤ n ‖y‖∞ , (55)

‖y‖2 ≤ ‖y‖1 ≤
√
n ‖y‖2 , (56)

‖y‖∞ ≤ ‖y‖2 ≤
√
n ‖y‖∞ . (57)

Therefore if the f(y, t) is Lipschitz continuous in D with respect to the 1-norm, i.e.,

‖f(y1, t)− f(y2, t)‖1 ≤ L1 ‖y1 − y2‖1 for all y1,y2 ∈ D, for all t ≥ 0 (58)

then it is also Lipschitz continuous with respect to the uniform norm. In fact, by using (55) we have

‖f(y1, t)− f(y2, t)‖∞ ≤ L1n︸︷︷︸
L∞

‖y1 − y2‖∞ . (59)

Of course, f(y, t) is also Lipschitz continuous with respect to the 2-norm.
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Theorem 4. If f(y, t) is of class C1 in a compact convex domain D ⊂ Rn, then f(y, t) is Lipschitz
continuous in D.

Proof. Let D ⊆ Rn be a compact convex domain and let

M = max
y∈D

∣∣∣∣∂fj(y, t)∂yi

∣∣∣∣ . (60)

Clearly M exists and is finite because we assumed that D is compact and that f is of class C1 in D4.
Consider two points y1 and y2 in D, and the line that connects y1 to y2, i.e.,

z(s) = (1− s)y1 + sy2 s ∈ [0, 1]. (61)

Since D is convex, we have that the line z(s) lies entirely within D. Therefore we can use the mean value
theorem applied to the one-dimensional function fi(z(s), t) (s ∈ [0, 1]) to obtain

fi(y2, t)− fi(y1, t) = ∇fi(z(s∗), t) · (y2 − y1) for some s∗ ∈ [0, 1]. (62)

By taking the absolute value and using the Cauchy-Schwartz inequality we obtain

|fi(y2, t)− fi(y1, t)|2 =

∣∣∣∣∣∣
n∑
j=1

∂fi(z(s∗))

∂yj
(y2j − y1j)

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
n∑
j=1

∂fi(z(s∗), t)

∂yj

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

n∑
j=1

(y2j − y1j)

∣∣∣∣∣∣
2

≤nM2 ‖y2 − y1‖22 . (63)

This implies that
‖f(y2, t)− f(y1, t)‖2 ≤ nM︸︷︷︸

L2

‖y2 − y1‖2 . (64)

i.e., f(y, t) is Lipschitz continuous in the 2-norm, or any other norm that is equivalent to the 2-norm. In
particular, by using the inequalities (55)-(57) we have that f(y, t) is Lipschitz continuous relative to the
1-norm and the uniform norm (∞-norm).

Lemma 2. If f(y, t) is of class C1 in D ⊆ Rn and has bounded derivatives ∂fi/∂yj then f(y, t) is Lipschitz
continuous in D.

Linear systems of ODEs. Consider the following autonomous system of linear differential equa-
tions

dy(t)

dt
= Ay(t) y(0) = y0. (65)

We have seen in AM214 that this system admits a global solution, i.e., the solution exists and is unique
for all t ≥ 0. Such an analytic solution can be expressed in terms of generalized eigenvectors of A as

y(t) =etAy0

=P etJP−1y0, (66)

4A compact domain is by definition bounded and closed. The minimum and maximum of a continuous function in defined
on a compact domain is attained at some points within the domain or on its boundary. Note that this is not true if the
domain is not compact. For example, the function f(y) = 1/y is continuously differentiable on ]0, 1] (bounded domain by not
compact), but the function is unbounded on ]0, 1].
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where P is a matrix that has the generalized eigenvectors of A as columns, and J is the Jordan form of
A. While the formula (66) is nice and compact, its computation requires the knowledge of the eigenvalues
and and generalized eigenvectors of A which is something that is not easy to compute, especially in
high-dimensions5. Moreover, the matrix A can be time-dependent (i.e., A(t)), in which case the matrix
exponential etA has to be replaced by a Magnus series (see, e.g., [1]).

Matrix norms compatible with vector norms Let us define the following matrix norm

‖A‖ = sup
y 6=0Rn

‖Ay‖
‖y‖

= sup
‖y‖=1

‖Ay‖ . (67)

Clearly, ‖A‖ is matrix norm (prove it as exercise), which satisfies, by definition, the following inequal-
ity

‖A‖ ≥ ‖Ay‖
‖y‖

i.e. ‖Ay‖ ≤ ‖A‖ ‖y‖ . (68)

It is straightforward to show that

‖A‖∞ = max
i=1,..,n

 n∑
j=1

|Aij |

 , (69)

‖A‖1 = max
j=1,..,n

(
n∑
i=1

|Aij |

)
, (70)

‖A‖2 =
√
λmax (ATA) = σmax(A), (71)

where σmax(A) is the largest singular value of the matrix A. For example,

‖Ay‖∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑
j=1

Aijyj

∣∣∣∣∣∣ ≤ max
i=1,...,n

 n∑
j=1

|Aij | |yj |

 ≤ ‖y‖∞ max
i=1,...,n

 n∑
j=1

|Aij |

 (72)

which implies that

‖Ay‖∞
‖y‖∞

≤ max
i=1,...,n

 n∑
j=1

|Aij |

 for all y 6= 0Rn , (73)

i.e.,

sup
y 6=0Rn

‖Ay‖∞
‖y‖∞

= max
i=1,...,n

 n∑
j=1

|Aij |

 = ‖A‖∞ . (74)

With any compatible matrix norm available we immediately see that the function f(y) = Ay is Lipschitz
continuous in Rn. In fact, we have

‖Ay1 −Ay2‖ ≤ ‖A‖ ‖y1 − y2‖ for all y1, y2 ∈ Rn, (75)

where L = ‖A‖ is the Lipschitz constant. Equation (75) implies that the solution to (65) is global in time.
This can be also shown by noticing that A is the Jacobian matrix of f(y, t) and that all entries of such a
matrix are of course bounded in Rn (see Lemma 2).

5If the matrix A has a particular structure, e.g., if A is a tridiagonal differentiation matrix (Toeplitz matrix), then there
are formulas available for the eigenvalues and the eigenvectors of A.
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The following result on the regularity of the flow generated by the initial value problem (27) holds
true.

Theorem 5 (Dependency of the ODE solution on the initial condition y0). Let D ⊂ Rn be an open set,
y ∈ D. If f : D × [0, T ] → Rn is Lipschitz continuous in D and continuous in [0, T ] then the solution
y(t;y0) to the initial value problem (27), i.e., flow generated by the ODE system, is continuous in y0.
Moreover, if f(y, t) is of class Ck (continuously differentiable k-times in D) in D then y(t;y0) is of class
Ck in D relative to y0.
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