
Quantifying the flight envelope of a
multi-rotor aircraft under random wind
forcing using Probabilistic collocation
method
Kevin Silberberg1

1University Of California, Santa Cruz

ABSTRACT

This study introduces a method to quantify the operational flight envelope of multi-rotor drones subject
to random wind disturbances using the Probabilistic Collocation Method (PCM). By modeling wind as
independent Gaussian random variables in two dimensions, the study solves a random initial value
problem to assess the drone’s stability during takeoff and hovering. PCM enables efficient computation
of the mean and variance of the drone’s trajectory under varying wind intensities, offering a faster
alternative to Monte Carlo simulations. Results reveal a critical threshold for wind variability, beyond
which stable hovering cannot be guaranteed, highlighting a clear relationship between wind variability
and flight stability. This framework provides valuable insights for mission planning in unpredictable
weather conditions and establishes a computationally efficient method for evaluating the impact of control
design on flight performance. Future work aims to explore the influence of payload changes, control
modifications, and 3D spatial modeling on the drone’s stability under random wind forcing.

Keywords: Probabilistic collocation method, Flight Envelope

NOMENCLATURE

t = time
y(t) = motion in horizontal direction
z(t) = motion in vertical direction
φ(t) = angle of rotation
f (t) = force of lift orthogonal to airframe
τ(t) = rotational force in clockwise direction
Fdy,z = drag force in the y or z direction

Cd = drag coefficient
ξy,z = wind speed
vry,z = air relative velocity

uy,z,φ = system control output
K py,z,φ = proportional gain for each state
Kiy,z,φ = integral gain for each state
Kzy,z,φ = derivative gain for each state

m = mass of the drone
g = force of gravity

Ixx = mass moment of inertia
L = length of the drone arm

TL,R = thrust produced by left or right motor
yd ,zd = desired coordinate position

INTRODUCTION
Multi-rotor small unmanned aircraft systems
(sUAS) have recently been employed in a wide
range of industrial applications, including the in-
spection of various structures (e.g., space shuttles,
wind turbines, nuclear power plants), the measure-
ment of atmospheric parameters (e.g., wind speed,
wind direction, temperature, pressure), and par-
ticipation in search and rescue operations. Addi-
tionally, sUAS operating in stable hovering flight
are increasingly used to capture atmospheric par-
ticulate matter by mounting a laser-gas analyzer
aboard the drone. However, this approach can push
the drone toward its payload limits and increase
instability under uncertain wind conditions. This
is often done in conjunction with either adding
an additional sensor (e.g., a sonic anemometer) to
measure wind velocity directly, or using sensor-
free methods to infer the wind velocity vector from
the drone’s Inertial Measurement Unit (IMU) Neu-
mann and Bartholmai (2015).

It is critical to understand the flight envelope
and operational limitations of a given sUAS con-
figuration—particularly regarding payload require-
ments, weight distribution, and control parameters
under challenging conditions such as high winds.
NASA has investigated off-nominal flight dynam-
ics in multi-rotor drones, including scenarios where

the vehicle deviates significantly from its intended
flight path due to controller-receiver communica-
tion failures (runaway events), extreme maneuvers
that lead to unrecoverable flight regimes, or adverse
environmental conditions such as vortex ring states
(VRS) during rapid descent Foster and Hartman
(2017).

In this study, we propose a method for quantify-
ing the drone’s flight envelope during takeoff and
approach to stable hovering flight by modeling the
wind as independent Gaussian random variables
in each spatial dimension. We then solve the as-
sociated random initial value problem—where the
drone takes off from a stationary position and at-
tempts to hover at a desired location under random
uniform forcing—using a probabilistic collocation
method (PCM). By using PCM, the wind can, in
fact, be modeled with any distribution, provided
that the random variables in each spatial dimension
are independent.

MODEL

For the purpose of this study, we make certain
assumptions to simplify the aerodynamics of the
equations of motion for a feedback-stabilized multi-
rotor drone, considering only two spatial dimen-
sions. However, the principles we apply can be
extended to three dimensions, as demonstrated by
the rigid body model outlined in González-Rocha
et al. González-Rocha et al. (2019).

2D-Rigid Body Model

The equations of motion are represented as a sys-
tem of first-order nonlinear time-invariant ordinary
differential equations.

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 =
1
m

(
Fdy −u1 sin(x3)

)
ẋ5 =

1
m

(
Fdz +u1 cos(x3)−mg

)
ẋ6 =

u2

Ixx

Under the mapping,

x1 = y(t)

x2 = z(t)

x3 = φ(t)

x4 = ẏ(t)

x5 = ż(t)

x6 = φ̇(t)

u1 = f (t)

u2 = τ(t)

where f (t), the force of thrust orthogonal to
the airframe, is a linear combination of the thrust
produced by the left and right motors.

f (t) = TR +TL

τ(t), the torque experienced by the aircraft about
its center of mass, is the difference between the
thrust produced by the left and right motors, multi-
plied by the distance of the actuator from the center
of mass (the length of the actuator arm).

τ(t) = L(TR −TL)

Ixx, the mass moment of inertia, is the total mass
of the aircraft multiplied by the square of the length
of the actuator arm.

Ixx = mL2

Controller
To define a control law using a proportional-
integral-derivative (PID) controller, we linearized
the model about steady and stable flight, such that
the tilt angle at equilibrium is zero. Notice that
at φeq(t) = 0, the aircraft would be parallel to the
ground, and the total thrust produced by the mo-
tors would counteract the force of gravity acting
on the airframe, i.e., feq(t) = mg. This condition
allows the aircraft to hover at a desired coordinate
position.

Given the above, the nonlinearities in the model
become,

sin(φeq(t)) = φeq(t)

cos(φeq(t)) = 1

See equations (1), (2), and (3) in the appendix for
the control law, where u1ctrl and u2ctrl are the in-
puts to the system. Here, ε is a small parameter
that determines the time interval of the error ac-
counted for in the input, and φd is the desired tilt
angle required to achieve the desired position in
the horizontal direction.

2/11

Drag and Random Wind Forcing
To induce translational motion on the drone that
is independent of the drone’s tilt angle, we must
introduce a drag term in the model. We define the
air-relative wind speed experienced by the drone
as the difference between the drone’s current speed
and the wind speed along each spatial direction.

vry =
dy
dt

−ξy

vrz =
dz
dt

−ξz

ξy,ξz ∼ N (0,σ2)

where ξy,z are normally distributed independent
random variables with a mean of zero and a varying
standard deviation, σ , for each spatial component.
Notice that in the context of a random variable
exhibiting a constant forcing on the drone over
time, if we sample both random variables indepen-
dently, we obtain a uniform random vector field
ξ with magnitude ||ξ ||=

√
ξ 2

y +ξ 2
z and direction

θ = arctan
(

ξz
ξy

)
.

Given the above, we define the quadratic drag
as:

Fdy =−Cdvry

√
v2

ry + v2
rz ,

Fdz =−Cdvrz

√
v2

ry + v2
rz ,

where the parameter Cd is a generalized drag coef-
ficient that captures information such as the cross-
sectional area of the drone, the density of the air,
and other related factors. In reality, the effects of
drag are asymmetric; however, for our purposes,
we assume that the drag effects on the drone are
equal in both spatial directions.

Notice that the parameter σ , the standard devia-
tion of the normal distribution, is analogous to wind
speed ||ξ || in our model. The larger the variance of
the normal distribution about the mean of zero, the
higher the probability of sampling a random vector
with increased magnitude.

METHODS
To understand the flight limitations of a drone un-
der varying wind conditions, or the maximal aver-
age wind speed that a drone can experience during
flight before its stability about the desired position
is no longer guaranteed, we introduce the proba-
bilistic collocation method (PCM). This method
allows us to calculate the average trajectories and
the associated variance of many realizations of a
drone flying in a uniform vector field to a maxi-
mal degree of exactness. By ”maximal degree of
exactness,” we mean that the statistical properties

(e.g., mean, variance, etc.) of the random initial
value problem associated with the PID-controlled
dynamical system can be computed exactly, down
to machine precision.

Orthogonal Polynomials
The first step is to calculate the set of unique orthog-
onal polynomials associated with the probability
density function (PDF) of the distributions used to
model the wind. The moment problem for each
random variable must be uniquely solvable and
must therefore satisfy at least one of the following
criteria (Venturi, 2014a, p. 42, Polynomial Chaos):

1. The PDF is compactly supported.

2. The moment-generating function

M(n) = E{enξ (w)}

exists and is finite in a neighborhood of n = 0.

3. ξ (w) is exponentially integrable.

4. The sequence of moments Mn = E{ξ n} satis-
fies

∞

∑
n=0

(
1

M2n

) 1
2n

= ∞.

Once these conditions are satisfied, the Stieltjes
Algorithm is used to determine the coefficients αn
and βn, which uniquely define the set of monic or-
thogonal polynomials corresponding to the weight
function µ(x) that is associated with the PDF pX (x)
of each random variable.

In our case, if we fix σ = σ∗, then the weight
function is given by

pY,Z(x,σ∗2) = µy,z(x) =
e−

x2

2σ∗2

√
2πσ∗2

,

where we truncate the normal distribution to be
within the support [−10,10], which still integrates
to 1 over the support.

Stieltjes Algorithm
The following algorithm finds M + 1 orthogonal
polynomials and the recurrence coefficients of the
first M polynomials αn,βn which we can later use
to find the gauss quadrature points which are the
zeros of the polynomial of order M+1.

We define the inner product as

⟨p,q⟩=
∫ b

a
p(x)q(x)µ(x)dx

for numerical stability when calculating this inte-
gral if the measure µ(x) is supported on the interval

3/11

[a, b] then we map it to the standard interval [-1, 1]
by using the coordinate transformation

x =
b−a

2
z+

b+a
2

z =
2

b−a

(
x− b+a

2

)
where z ∈ [−1,1] and

µ(z) = pX

(
b−a

2
z+

b+a
2

)
Once we have computed the Gauss quadrature

points and weights, which we will outline in the
next section, we can map the points back into the
original domain [a, b] by performing the inverse
transformation.

Given the above, we perform the following steps
to calculate the family of orthogonal polynomials
πn+1 and the coefficients αn,βn.

The coefficients can be computed by the ratio of
inner products,

αn =
⟨xπn,πn⟩
⟨πn,πn⟩

βn =
⟨πn,πn⟩

⟨πn−1,πn−1⟩

1. Initialize three arrays of length M+2 where
the index of each array are from n =
0,1, ...,M+1.

2. Set n = 1, βn = 0, πn−1(x) = 0, and πn(x) = 1
and compute αn.

3. Compute

πn+1(x) = (x−αn)πn(x)−βnπn−1(x)

4. With πn+1(x) and πn(x) compute βn+1.

5. Repeat steps 2 through 4 until you have M+1
polynomial functions.

Gaussian Quadrature Points and Weights
With the coefficients αn and βn from the Stielt-
jes Algorithm, we can find the gauss quadrature
points and weights by first constructing the follow-
ing tridiagonal symmetric matrix of size M ×M,

S =



α0
√

β1 0 0 · · · 0√
β1 α1

√
β2 0 · · · 0

0
√

β2 α2
√

β3 · · · 0
...

.
...

0 · · · 0
√

βn−1 αn−1
√

βn

0 · · · 0 0
√

βn αn



The gauss quadrature points z j are zeros of the
M + 1 orthogonal polynomial calculated by the
Stieltjes Algorithm and can be found easily by cal-
culating the eigenvalues of the matrix S (Venturi,
2014b, p. 12, Sampling Methods). Each corre-
sponding weight w j is equal to the the first compo-
nent of each normalized eigenvector v1, j squared.

w j = (v1, j)
2
∫ 1

−1
µ(z)dz

Probabilistic Collocation Method
Now that we have the Gauss points and weights
corresponding to each random variable available,
we construct a n-dimensional grid in R⋉ by taking
the tensor product of all the points defined as

{(zi1 ,zi2 , ...,zin)|i1, i2, ..., in ∈ {1,2, ...,M}}

So for example in our case of dimension n = 2
and our random variables being i.i.d. we can simply
construct a matrix,

Y =


z1 z1 · · · z1
z2 z2 · · · z2
...

...
. . .

...
z j z j · · · z j

 Z =


z1 z2 · · · zM
z1 z2 · · · zM
...

...
. . .

...
z1 z2 · · · zM



and flatten each matrix such that the columns of
Y,Z are stacked on top of each other. Points in 2D
would then be a Vector of size M2 ×2,

pi =


Y1 Z1
Y2 Z2
...

...
Yi Zi


where i = 1,2, ...,M2

We can easily calculate weights corresponding
to each point by taking the outer product

wi = wT
j ·w j

In Figure 1 we calculate each Gauss quad point
and weight for the Normal distribution with mean

4/11

µ = 0.0 and standard deviation σ = 1.0 and plot
them as wind vectors emanating from the origin.
Each vector is colored by its corresponding weight
scaled by the natural log. Following the above
procedure, we can find the relationship between the
parameter σ , the standard deviation of the Normal
distribution, and the magnitude of the average wind
vector being applied to the drone.

Figure 1. Gauss points derived from tensor product
PCM with M = 10 points and fixing the normal
distribution at µ = 0.0,σ = 1.0, representing the
uniform wind vector fields that we are subjecting the
drone to, for each simulation. The vectors are colored
by the natural log of their corresponding weights to
show that the points closer to the mean have a higher
contribution to the weighted average.

In Figure 2 we take find the weighted average
of the Gauss quadrature points for varying σ . This
shows a linear relationship between the spread of
the normal distribution and the magnitude of the
average uniform vector applied to the drone for all
realizations.

Figure 2. Linear relationship between the average
magnitude of the random vector sampled from two
independent Gaussian distributions with varying σ .

The equation of the line can then used to map
the value of the standard deviation to the wind
speed when characterizing the flight envelope of

the drone.
We can calculate the mean PCM trajectory by

taking the weighted average of the solution by nu-
merically solving the initial value problem M num-
ber of times, and then calculating the weighted
average of those points in each spatial dimension
by,

x̄ j =

[
M

∑
n=0

x jn(t)

]T

·wi for j = 1,2, ...,6

RESULTS
We vary the parameter σ and calculate the Gauss
points and weights for each variation of the nor-
mal distribution with the number of orthogonal
polynomials set to M = 10, then solve the initial
value problem in time from t ∈ [0,30] seconds with
initial conditions x(0) = 0 for all state variables
for all Gauss points (in this case 100 times). This
means the drone takes off from the origin and trav-
els to its desired position, which we have set to
(yd ,zd) = (1.0,2.0).

Figure 3. All 100 trajectories of the drone traveling
from the origin at the initial condition, to the desired
point (yd ,zd) = (1.0,2.0) under varying uniform vector
fields

In the absence of wind, the drone’s path is stable
and hovers at the desired coordinate position (see
figure 5 in the appendix). If we set sigma to be σ =
1.5 and plot one mean PCM trajectory In Figure 3
we show each of the solution trajectories at every
gauss point. We can see that with arbitrarily greater
wind speeds the drone’s trajectories deviates from
the desired position.

Characterizing the Flight envelope
If we plot many mean trajectories in the same plot,
we can see that around a σ of 0.61 corresponding
to an average wind speed of 0.8 meters per second,
the drone enters a flight regime where steady and

5/11

stable flight can not be guaranteed. This can be
clearly seen in figure 4 where we plot many mean
PCM trajectories.

Figure 4. Mean PCM trajectories for varying sigma

DISCUSSION
This study introduced a novel method for charac-
terizing the flight envelope of multi-rotor aircraft
under the influence of random wind forcing. By
employing the Probabilistic Collocation Method
(PCM), we understand the impact of wind variabil-
ity on the stability and control of small unmanned
aircraft systems (sUAS) during takeoff and hover
phases. The findings highlight key aspects of the
drone’s operational limits, offering a quantifiable
relationship between wind variability, represented
by the standard deviation σ of the normal distri-
bution, and the drone’s ability to maintain stable
flight.

One of the most notable outcomes is the identi-
fication of a critical threshold for wind variability
beyond which stable hovering can no longer be
guaranteed. As illustrated, the drone’s flight path
deviates significantly from its desired position at
higher values of σ , corresponding to stronger wind
conditions. This method can be useful for mission
planning, particularly in applications like atmo-
spheric sampling or inspection in unpredictable
weather conditions.

The use of PCM provided a computationally effi-
cient means of estimating the mean and variance of
the drone’s trajectory, avoiding the need for exhaus-
tive Monte Carlo simulations. This method’s effi-
ciency is particularly advantageous when assessing
multiple flight configurations or testing different
controller designs. By leveraging orthogonal poly-
nomials and Gauss quadrature points, we achieved
precise statistical characterizations of the system’s
response to random forcing.

For future work, we would like to introduce
more variability into the system and determine how
factors such as the weight of the drone, or changes

to the mass moment of inertia effect the drones
dynamics under uncertain wind conditions. This
approach would allow us to systematically explo-
ration of how changes in the control system parame-
ters, payload weight, and aerodynamic coefficients
influence the drone’s stability under random wind
forces.

REFERENCES
Foster, J. V. and Hartman, D. (2017). High-Fidelity

Multi-Rotor Unmanned Aircraft System (UAS)
Simulation Development for Trajectory Predic-
tion Under Off-Nominal Flight Dynamics, chap-
ter 3271. American Institute of Aeronautics and
Astronautics.

González-Rocha, J., Woolsey, C. A., Sultan, C.,
and De Wekker, S. F. J. (2019). Sensing wind
from quadrotor motion. Journal of Guidance,
Control, and Dynamics, 42(4):836–852.

Neumann, P. P. and Bartholmai, M. (2015). Real-
time wind estimation on a micro unmanned
aerial vehicle using its inertial measurement unit.
Sensors and Actuators A: Physical, 235:300–
310.

Venturi, D. (2014a). Lecture notes am238, poly-
nomial chaos. Canvas, University of California
Santa Cruz.

Venturi, D. (2014b). Lecture notes am238, sam-
pling methods. Canvas, University of California
Santa Cruz.

6/11

APPENDIX

Figures

Figure 5. A single drone trajectory under no wind conditions.

Figure 6. Mean PCM trajectories of the drone with varying σ in blue, and the trajectory variance in orange.

Figure 7. A mean PCM trajectory under strong wind conditions (σ = 1.5)

7/11

Equations

u1ctrl =−Fdz +mg+m
(

Kpz(zd − x2)+Kiz

(∫ t

t−ε

zddt −
∫ t

t−ε

x2dt
)
−Kdz x5

)
(1)

u2ctrl = Ixx

(
Kpφ

(φd − x3)+Kiφ

(∫ t

t−ε

φddt −
∫ t

t−ε

x3dt
)
−Kdφ

x6

)
(2)

x3ctrl = φctrl = φd =
1
g

(
Fdy

m
−
(
Kpy(yd − x1)

)
+Kiy

(∫ t

t−ε

yddt −
∫ t

t−ε

x1dt
)
−Kdyx4

)
(3)

Code

using DifferentialEquations
using DynamicalSystems
using Printf
using GLMakie
using QuadGK
using StaticArrays
using LinearAlgebra
using Statistics

weight function
Normal(x, u, sigma) = exp(-(x - u)ˆ2/(2*sigmaˆ2))/sqrt(2.0*pi*sigmaˆ2)

define an integral using gauss-kronrod quadrature rule
integ(x::Function, sup::SVector{2, Float64}) = quadgk(x, sup[1], sup[2];

atol=1e-8, rtol=1e-8)[1]↪→

function stieltjes(mu::Function, N::Int64, sup::SVector{2, Float64})
M = N + 2 # Extend size to accommodate buffer
n = 2 # Starting index for the recursion

Initialize orthogonal polynomials (pi_n) as functions
pi = Vector{Function}(undef, M)
pi[n-1] = x -> 0.0 * xˆ0.0 # pi_0(x) = 0
pi[n] = x -> 1.0 * xˆ0.0 # pi_1(x) = 1

Initialize coefficient vectors alpha_n and beta_n
alpha = Vector{Float64}(undef, M)
beta = Vector{Float64}(undef, M)

Compute the first alpha coefficient (alpha_2)
alpha_2 = <x pi_1, pi_1> / <pi_1, pi_1>
alpha[n] = integ(x -> x * pi[n](x) * pi[n](x) * mu(x), sup) / integ(x ->

pi[n](x) * pi[n](x) * mu(x), sup)↪→

Compute the next orthogonal polynomial pi_2
pi_2(x) = (x - alpha_1)pi_1(x) - beta_1pi_0(x)
pi[n+1] = x -> (x - alpha[n]) * pi[n](x)

for n in 3:M-1
alpha[n] = integ(x -> x * pi[n](x) * pi[n](x) * mu(x), sup) /

integ(x -> pi[n](x) * pi[n](x) * mu(x), sup)↪→

beta[n] = integ(x -> pi[n](x) * pi[n](x) * mu(x), sup) / integ(x ->
pi[n-1](x) * pi[n-1](x) * mu(x), sup)↪→

pi[n+1] = x -> (x - alpha[n]) * pi[n](x) - beta[n] * pi[n-1](x)
end
return pi, alpha, beta

end

8/11

function guassQuad(mu::Function, M::Int64, sup::SVector{2, Float64})
get polynomials, alpha, and beta coefficients of the weight function

mu↪→

polynomials, alpha, beta = stieltjes(mu, M, sup)

construct tridiagonal S Matrix
S = Matrix{Float64}(undef, M, M)
for idx in CartesianIndices(S)

i, j = idx.I
if abs(i - j) <= 1

if i == j
S[idx] = alpha[i + 1]

elseif i == j - 1
S[idx] = sqrt(beta[j + 1])

elseif i == j + 1
S[idx] = sqrt(beta[i + 1])

end
else

S[idx] = 0.0
end

end
return polynomials, eigvals(S), eigvecs(S)[1, :] .ˆ 2

end

function hermitePCM(M::Int64, mu::Float64, sigma::Float64)
_, p, w = guassQuad(x->Normal(x, mu, sigma), M, SA[-10.0, 10.0])
X = repeat(p, 1, M)
Y = repeat(p', M, 1)
flatten the points and weights
return hcat(vec(X), vec(Y)), vec(w*w')

end

getParams(windy::Float64, windz::Float64, Kpy::Float64, Kiy::Float64,
Kdy::Float64, Kpz::Float64, Kiz::Float64, Kdz::Float64, Kpphi::Float64,
Kiphi::Float64, Kdphi::Float64) = SVector{18, Float64}(

↪→

↪→

9.81, # gravity
0.91, # mass
0.056875,# mass moment of inertia
0.25, # length
5.328, # max thrust
0.25, # drag coefficient
1.0, # integration time delay
windy,
windz,
Kpy, Kiy, Kdy,
Kpz, Kiz, Kdz,
Kpphi, Kiphi, Kdphi

)

getInit() = SVector{6, Float64}(
0.0, # initial y position
0.0, # initial z position
0.0, # initial tilt position
0.0, # initial velocity in y
0.0, # initial velocity in z
0.0 # initial velocity in phi

)

getDesired() = SVector{2, Float64}(

9/11

1.0, # yd
2.0 # zd

)

int(x::Float64, t::Float64, eps::Float64) = quadgk(z -> x, t - eps, t, atol
= 1e-6, rtol = 1e-6)[1]↪→

getDrag(Cd::Float64, dy::Float64, dz::Float64, vy::Float64, vz::Float64) =
SVector{2, Float64}(↪→

-Cd*(dy - vy)*sqrt((dy - vy)ˆ2 + (dz - vz)ˆ2),
-Cd*(dz - vz)*sqrt((dy - vy)ˆ2 + (dz - vz)ˆ2)

)

function droneRule(u, p, t)
yd, zd = getDesired()
Fdy, Fdz = getDrag(p[6], u[4], u[5], p[8], p[9])
control law
phid = (1.0/p[1])*((Fdy/p[2]) - (p[10]*(yd - u[1]) + p[11]*(int(yd, t,

p[7]) - int(u[1], t, p[7])) - p[12]*u[4]))↪→

u1_ctrl = -Fdz + p[2]*p[1] + p[2]*(p[13]*(zd - u[2]) + p[14]*(int(zd, t,
p[7]) - int(u[2], t, p[7])) - p[15]*u[5])↪→

u2_ctrl = p[3]*(p[16]*(phid - u[3]) + p[17]*(int(phid, t, p[7]) -
int(u[3], t, p[7])) - p[18]*u[6])↪→

clamp to max thrust
TL = clamp(0.5*(u1_ctrl - u2_ctrl/p[4]), 0.0, p[5])
TR = clamp(0.5*(u1_ctrl + u2_ctrl/p[4]), 0.0, p[5])
u1 = TL + TR
u2 = (TR - TL)*p[4]

outputs
dx4 = (1.0/p[2])*(Fdy - u1*sin(u[3]))
dx5 = (1.0/p[2])*(Fdz + u1*cos(u[3]) - (p[2]*p[1]))
dx6 = (u2/p[3])
return SVector{6, Float64}(u[4], u[5], u[6], dx4, dx5, dx6)

end

function solsize()
solve problem once to get size of solution
prob = ODEProblem(droneRule, getInit(), (0.0, 30.0), getParams(0.0, 0.0,

0.4, 0.1, 1.0, 0.4, 0.1, 1.0, 18.0, 1.0, 15.0))↪→

sol = solve(prob, Tsit5(), dt=1e-3, adaptive = false, abstol = 1e-8,
reltol = 1e-8)↪→

length(sol.t)
end

function PCM(points::Matrix{Float64}, weights::Vector{Float64},
gains::SVector{9, Float64}, Z::Int64)↪→

create a vector of the same size of solution
ysol = Matrix{Float64}(undef, size(points)[1], Z)
zsol = Matrix{Float64}(undef, size(points)[1], Z)

solve the problem Mˆ2 times
for i in 1:size(points)[1]

prob = ODEProblem(droneRule, getInit(), (0.0, 30.0),
getParams(points[i, 1] ,points[i, 2], gains...))↪→

sol = solve(prob, Tsit5(), dt=1e-3, adaptive = false, abstol = 1e-8,
reltol = 1e-8)↪→

ysol[i, :] = sol[1, :]
zsol[i, :] = sol[2, :]

10/11

end

muy, muz = SA[ysol' * weights, zsol' * weights]
sigmay, sigmaz = SA[((ysol .- muy').ˆ2)' * weights, ((zsol .- muz').ˆ2)'

* weights]↪→

SA[muy, muz, sqrt.(sigmay), sqrt.(sigmaz)]
end

function buildPDF()
Z = solsize()
n = 4
sigmas = LinRange(0.6, 1.3, nˆ2)
M = 10
yd, zd = getDesired()

f = Figure()
for i in 1:n

for j in 1:n
k = (i-1)*n+j
ax = Axis(f[i, j],

title = "sigma = $(@sprintf("%.2f", sigmas[k]))",
xlabel="y",
ylabel="z"

)
xlims!(ax, -1.0, 2.0)
ylims!(ax, 0.0, 2.5)
p, w = hermitePCM(M, 0.0, sigmas[k])
muy, muz, sigmay, sigmaz = PCM(p, w, SA[0.4, 0.1, 1.0, 0.4, 0.1,

1.0, 18.0, 1.0, 15.0], Z)↪→

lines!(ax, muy, muz, color = :blue)
band!(ax, muy, muz.-sigmaz, muz.+sigmaz, alpha=0.4, color =

:orange)↪→

scatter!(ax, yd, zd, color = :red)
end

end
f

end

11/11

	References

